Formalizing Coq Modules in the MetaCoq Project

XFC4101 Final Report

Tan Yee Jian April 17, 2023

National University of Singapore

Outline

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

Introduction

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

Widely used for mathematical proofs (such as the Four-Color Theorem and Feit-Thompson Theorem) and program verification (CompCert C Compiler).

Widely used for mathematical proofs (such as the Four-Color Theorem and Feit-Thompson Theorem) and program verification (CompCert C Compiler).

Implementation of Coq has consistency-threatening bugs! Who watches the watchers?

Widely used for mathematical proofs (such as the Four-Color Theorem and Feit-Thompson Theorem) and program verification (CompCert C Compiler).

Implementation of Coq has consistency-threatening bugs! Who watches the watchers?

Or can Coq verify itself?

In 2020, Sozeau et. al. completed the formalization for a large subset of Coq in the MetaCoq project: "Coq Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq".

In 2020, Sozeau et. al. completed the formalization for a large subset of Coq in the MetaCoq project: "Coq Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq".

However, a few features such as Modules are missing from the project. Modules are important for almost all large Coq projects!

In 2020, Sozeau et. al. completed the formalization for a large subset of Coq in the MetaCoq project: "Coq Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq".

However, a few features such as Modules are missing from the project. Modules are important for almost all large Coq projects!

Therefore we are here!

1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.
- 3. Translation of modules from TemplateCoq to PCUIC.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.
- 3. Translation of modules from TemplateCoq to PCUIC.
- 4. A second implementation of Coq modules unifying Modules and the Global Environment.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.
- 3. Translation of modules from TemplateCoq to PCUIC.
- 4. A second implementation of Coq modules unifying Modules and the Global Environment.
- 5. A summary of three recursion-related formal proof techniques.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.
- 3. Translation of modules from TemplateCoq to PCUIC.
- 4. A second implementation of Coq modules unifying Modules and the Global Environment.
- 5. A summary of three recursion-related formal proof techniques.

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

Originally **TemplateCoq**, a Coq program that reifies/quotes terms in Coq.

Originally **TemplateCoq**, a Coq program that reifies/quotes terms in Coq.

Since we have terms, why not state some properties about them?

Originally **TemplateCoq**, a Coq program that reifies/quotes terms in Coq.

Since we have terms, why not state some properties about them?

Added **PCUIC** (Polymorphic Cumulative Calculus of Inductive Constructions) and **Safechecker**, a fuel-free, verified reduction machine.

Originally **TemplateCoq**, a Coq program that reifies/quotes terms in Coq.

Since we have terms, why not state some properties about them?

Added **PCUIC** (Polymorphic Cumulative Calculus of Inductive Constructions) and **Safechecker**, a fuel-free, verified reduction machine.

Proof erasure to untyped calculus, ready for translation into "usual" programming languages.

Originally **TemplateCoq**, a Coq program that reifies/quotes terms in Coq.

Since we have terms, why not state some properties about them?

Added **PCUIC** (Polymorphic Cumulative Calculus of Inductive Constructions) and **Safechecker**, a fuel-free, verified reduction machine.

Proof erasure to untyped calculus, ready for translation into "usual" programming languages.

Where is the implementation?

- (Coq) TemplateCoq PCUIC Checker Erasure (Machine Code)
- Actual data structure of modules live in **TemplateCoq**.
- Verification of properties of modules live in TemplateCoq.
- Translation from TemplateCoq to PCUIC.
- Difference? PCUIC is easier to prove (semantical) theorems.

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

Modules as "collections of definitions".

```
Inductive nat :=
| 0
| S : nat -> nat.
Fixpoint plus (n m: nat) :=
    match n with
    | S n' ⇒ S (plus n' m)
    | 0 ⇒ m
    end.
```

"Packaging" definitions into a Module (Type).

```
(* A magma is a set with a binary (closed) operation. *)
Module Type Magma.
    Parameter T: Set.
    Parameter op: T -> T -> T.
End Magma.
```

```
Module Nat: Magma.

Definition T := nat.

Definition op := plus.

End Nat.
```

Modules can be aliased for ease of reference.

Module Type M := Magma.
Module MyNat: M := Nat.

Higher-order modules - Functors.

(* A functor transforming a magma into another magma. *)
Module DoubleMagma (M: Magma): Magma.
Definition T := M.T.
Definition op x y := M.op (M.op x y) (M.op x y).
End DoubleMagma.

Module NatWithDoublePlus := DoubleMagma Nat.

- A **constant** declaration.
- An **inductive** declaration.
- A module declaration.
- A module type declaration.

- A **constant** declaration.
- An **inductive** declaration.
- A module declaration.
- A module type declaration.

A **module** is a **structure** with a name and possibly a **module type**, where all definitions are concrete.

- A **constant** declaration.
- An **inductive** declaration.
- A module declaration.
- A module type declaration.

A **module** is a **structure** with a name and possibly a **module type**, where all definitions are concrete.

A **module type** is a **structure** with a name.

- A **constant** declaration.
- An **inductive** declaration.
- A module declaration.
- A module type declaration.

A **module** is a **structure** with a name and possibly a **module type**, where all definitions are concrete.

A **module type** is a **structure** with a name.

A **functor** is a parametrized module, by another module or functor.

Modules are declarations, and they live in an **environment**. An environment is an ordered list of declarations:

- A **constant** declaration.
- An inductive declaration.
- A module declaration.
- A module type declaration.

Coq Modules are second-class objects and have separate semantics from that of terms. Lives on another plane and have limited interactions.

Semantics are given by typing rules. Formation rules and access rules.

 $\frac{WF(E, E')[]}{E[] \vdash WF(Struct E' End)}$ $\frac{E[] \vdash p \rightarrow Struct e_1; \dots; e_i; Mod(X : S[:= S_1]); e_{i+2}; \dots; e_n End}{E; e_1; \dots; e_i[] \vdash S \rightarrow \overline{S}}$ $E[] \vdash p.X \rightarrow \overline{S}$
Implementation

Outline

Introduction Summary The MetaCoq Project Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

Implementation	Verification
1. Definition of Modules	2. Lookup of definitions
3. Typing rules for Modules	4. Functoriality of Typing Rules
(Term typing rules)	5. Typing of terms
6. Translation to PCUIC	(Correctness of translation)
7. Modular Environment	(Correctness of implementation)

8. Three Formal Proof Techniques

Contents

Introduction Summary The MetaCoq Project Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

1. Definition of Modules

Definition of Structures.

```
Inductive structure_field :=
324
       sfconst : constant_body -> structure_field
325
         sfmind : mutual_inductive_body -> structure_field
326
         sfmod : module_implementation -> structure_body -> structure_field
327
       sfmodtype : structure_body -> structure_field
328
       with module_implementation :=
329
         mi_abstract : module_implementation
330
         mi_algebraic : kername -> module_implementation
331
         mi_struct : structure_body -> module_implementation
332
         mi_fullstruct : module_implementation
333
       with structure_body :=
334
       | sb nil
335
       | sb_cons : ident -> structure_field -> structure_body -> structure_body.
336
```

Listing 1: TemplateCoq/theories/Environment.v

Now, we can define proper Modules and Module Types as follows:

```
344 Definition module_type_decl := structure_body.
345 Definition module_decl := module_implementation × module_type_decl.
347 Inductive global_decl :=
348 | ConstantDecl : constant_body -> global_decl
349 | InductiveDecl : mutual_inductive_body -> global_decl
350 | ModuleDecl : module_decl -> global_decl
351 | ModuleTypeDecl : module_type_decl -> global_decl.
```

Listing 2: TemplateCoq/theories/Environment.v

2. Lookup of Modules

Theorem (Lookup)

Looking up kn yields mdecl iff mdecl is declared with kn.

```
Lemma declared_module_lookup {Σ mp mdecl} :
202
          declared_module \Sigma mp mdecl ->
203
          lookup_module \Sigma mp = Some mdecl.
204
       Proof.
205
          unfold declared_module, lookup_module. now intros ->.
206
       Qed.
207
208
        Lemma lookup_module_declared {Σ kn mdecl} :
209
          lookup_module \Sigma kn = Some mdecl ->
210
          declared_module \Sigma kn mdecl.
211
       Proof.
212
          unfold declared_module, lookup_module.
213
          destruct lookup_env as [[]] \Rightarrow //. congruence.
214
       Oed.
215
```

Listing 3: TemplateCoq/theories/EnvironmentTyping.v

The core is the structure fields.

1223	Inductive on_structure_f:	ield Σ : structure_field -> Type : =
1224	on_sfconst c : (on_constant_decl Σ c
1225		-> on_structure_field Σ (sfconst c)
1226	on_sfmind kn inds : (on_inductive Σ kn inds
1227		-> on_structure_field Σ (sfmind inds)
1228	on_sfmod mi sb : (on_module_impl Σ mi
1229		-> on_structure_body Σ sb
1230		-> on_structure_field Σ (sfmod mi sb)
1231	on_sfmodtype mtd : (on_structure_body Σ mtd
1232		-> on_structure_field Σ (sfmodtype mtd)

Listing 4: Typing rules for structure fields.

3. Typing rules for modules

Subsequently, the typing rule for structures, and modules.

```
with on_structure_body \Sigma : structure_body -> Type :=
1233
           on_sb_nil : on_structure_body Σ sb_nil
1234
           on_sb_cons kn sf sb : on_structure_field \Sigma sf
1235
                                   \rightarrow on_structure_body \Sigma sb
1236
                                   -> on_structure_body \Sigma (sb_cons kn sf sb)
1237
      with on_module_impl Σ : module_implementation -> Type :=
1238
           on_mi_abstract : on_module_impl Σ mi_abstract
1239
           on_mi_algebraic kn : on_module_impl Σ (mi_algebraic kn)
1240
           on_mi_struct sb : on_structure_body Σ sb
1241
                               -> on_module_impl \Sigma (mi_struct sb)
1242
         on_mi_fullstruct : on_module_impl Σ mi_fullstruct.
1243
      Definition on_module_type_decl := on_structure_body.
1250
      Definition on_module_decl \Sigma m := on_module_impl \Sigma m.1
1251
                                            \times on_module_type_decl \Sigma m.2.
1252
```

Listing 5: Typing rules for structure, and modules.

4. Functoriality of Typing Rules

Lemma (Global declaration) Fix term typing rules P, Q such that if the environment is P-well-formed if P types term t with type T, then Q types term t with type T as well.

Let Σ be a P-well-formed environment. If the definition (kn, d) is well-formed, then (kn, d) is Q-well-formed.

Listing 6: Functoriality of typing of a global declaration.

```
Theorem (Global Environment)
Fix term typing rules P, Q such that they type terms in the same
way for all terms t : T.
```

Let Σ be a P-well-formed environment. Then Σ is Q-well-formed.

1459	<pre>Lemma on_global_env_impl {cf : checker_flags} Pcmp P Q :</pre>
1460	(forall ΣΓ t T,
1461	on_global_env Pcmp P Σ.1 ->
1462	on_global_env Pcmp Q Σ.1 ->
1463	ΡΣΓtΤ->QΣΓtΤ)->
1464	forall Σ , on_global_env Pcmp P Σ -> on_global_env Pcmp Q

Listing 7: Functoriality of the typing of global environments.

Σ.

5. Typing of terms

Theorem

Fix any two predicates P and P_{Γ} that about a term t and a type T. Suppose we are given global environment Σ and local context Γ which are well-formed, and that the following typing relation holds: Σ ; ; $\Gamma \vdash t$: T, then P holds on the global environment Σ , and P_{Γ} holds on the local context.

Listing 8: Definition of key lemma in typing.

This marks the end of the TemplateCoq part of the First Implementation. We have seen

- 1. The definition of Modules.
- 2. Proof of lookup iff declared.
- 3. The definition of Typing Rules.
- 4. Functoriality.
- 5. Typing properties of terms.

We will show the translation to PCUIC and motivate the Second Implementation.

6. Translation to PCUIC

The global environment for PCUIC is without modules:

```
Inductive global_decl :=
278
         ConstantDecl : constant_body -> global_decl
279
         InductiveDecl : mutual_inductive_body -> global_decl.
280
       Derive NoConfusion for global_decl.
281
282
       Definition global_declarations := list (kername * global_decl).
283
284
       Record global_env := mk_global_env
285
         { universes : ContextSet.t;
286
           declarations : global_declarations;
287
           retroknowledge : Retroknowledge.t }.
288
```

Listing 9: Definition of the global environment for PCUIC.

So we translate by ... removing modules!

The engine of the translation of modules.

```
Fixpoint trans_structure_field kn id (sf : Ast.Env.structure_field) :=
314
         let kn' := kn_append kn id in
315
         match sf with
316
           Ast.Env.sfconst c \Rightarrow [(kn', ConstantDecl (trans_constant_body c))]
317
          Ast.Env.sfmind m \Rightarrow [(kn', InductiveDecl (trans_minductive_body m))]
318
          Ast.Env.sfmod mi sb ⇒ match mi with
319
           | Ast.Env.mi_fullstruct ⇒ trans_structure_body kn' sb
320
           Ast.Env.mi_struct s ⇒ trans_structure_body kn' s
321
            | _ ⇒ trans_module_impl kn' mi
322
           end
323
         | Ast.Env.sfmodtype _ ⇒ []
324
         end
325
```

Listing 10: Translation of structure fields to PCUIC.

Run the field-by-field translation over the body.

334	with trans_structure_body kn (sb: Ast.Env.structure_body) :=
335	match sb with
336	Ast.Env.sb_nil ⇒ []
337	Ast.Env.sb_cons id sf tl \Rightarrow
338	trans_structure_field kn id sf ++ trans_structure_body kn tl
339	end .

Listing 11: Translating structure body.

Now we can translate a global declaration...

```
Definition trans_global_decl (d : kername × Ast.Env.global_decl) :=
508
       let (kn, decl) := d in match decl with
509
       | Ast.Env.ConstantDecl bd ⇒
510
         [(kn, ConstantDecl (trans_constant_body bd))]
511
       | Ast.Env.InductiveDecl bd ⇒
512
         [(kn, InductiveDecl (trans_minductive_body bd))]
513
       | Ast.Env.ModuleDecl bd ⇒ trans_module_decl kn bd
514
       | Ast.Env.ModuleTypeDecl _ ⇒ []
515
       end.
516
```

Listing 12: Translating a global declaration.

And finally global declarations!

527 **Definition** trans_global_decls env (d : Ast.Env.global_declarations)

- 528 : global_env_map
- 529 := fold_right
- $_{530}$ (fun decl Σ ⇒ fold_right add_global_decl Σ (trans_global_decl Σ decl))
- 531 env d.

Listing 13: Translating global declarations.

And finally global declarations!

527 **Definition** trans_global_decls env (d : Ast.Env.global_declarations)

- 528 : global_env_map
- 529 := fold_right
- $_{530}$ (fun decl Σ ⇒ fold_right add_global_decl Σ (trans_global_decl Σ decl))
- 531 env d.

Listing 14: Translating global declarations.

Uh-oh... notice the double fold.

Theorem (Translated iff Exists) "Translation preserves non-existence", that is, the translated environment should only contain the intended translation and nothing more; and its dual, "Translation preserves existence". that is, nothing is lost in translation.

6.5. Verification of translation

6.9. Motivation for Second Implementation

```
Proof.
239
       destruct \Sigma as [unive \Sigma retro]. induction \Sigma.
240
       - cbn; auto.
241
            --- (** a.2 is a *)
307
              unfold trans_global_env. subst Smap'; simpl.
308
              (** proving assertion by mutual induction *)
316
              * subst P P0 P1. apply Ast.Env.sf_mi_sb_mutind ⇒ //=.
317
                ** cbn. intros c id.
318
                   *** simpl in *. subst.
326
```

Listing 15: Tedious nested proofs.

The first case takes 200 lines and counting!

6.9. Motivation for Second Implementation

```
Proof.
239
       destruct \Sigma as [unive \Sigma retro]. induction \Sigma.
240
       - cbn; auto.
241
            --- (** a.2 is a *)
307
              unfold trans_global_env. subst Smap'; simpl.
308
              (** proving assertion by mutual induction *)
316
              * subst P P0 P1. apply Ast.Env.sf_mi_sb_mutind ⇒ //=.
317
                ** cbn. intros c id.
318
                   *** simpl in *. subst.
326
```

Listing 16: Tedious nested proofs.

The first case takes 200 lines and counting! Too many repeated proofs.

6.9. Motivation for Second Implementation

Culprit!

```
Inductive structure_field :=
324
       sfconst : constant_body -> structure_field
325
         sfmind : mutual_inductive_body -> structure_field
326
       | sfmod : module_implementation -> structure_body -> structure_field
327
       sfmodtype : structure_body -> structure_field
328
       Inductive global_decl :=
347
         ConstantDecl : constant_body -> global_decl
348
         InductiveDecl : mutual_inductive_body -> global_decl
349
         ModuleDecl : module_decl -> global_decl
350
         ModuleTypeDecl : module_type_decl -> global_decl.
351
```

Listing 17: An opportunity for abstraction!

Contents

Introduction Summary The MetaCoq Project Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

An environment is just a module

An environment is just a module named by its directory path (eg. /metacoq/template-coq/theories/Environment.v).

An environment is just a module named by its directory path (eg. /metacoq/template-coq/theories/Environment.v).

All theorems on the typing of environment follow from that of modules!

Let us define modules, then specialize into environments.

```
Inductive structure_field :=
325
         ConstantDecl : constant_body -> structure_field
326
         InductiveDecl : mutual_inductive_body -> structure_field
327
         ModuleDec1 :
328
           module_implementation
329
           -> list (ident × structure_field)
330
           -> structure field
331
        ModuleTypeDecl : list (ident × structure_field) -> structure_field
332
```

Listing 18: Definition of structure fields.

"Globalization"!

- **Definition** module_type_decl := structure_body.
- **Definition** module_decl := module_implementation × module_type_decl.
- **Notation** global_decl := structure_field.
- **Notation** global_declarations := structure_body.

Listing 19: Definition of global declarations.

7.5. Typing Rules

Implemented but unverified typing rules. The interesting part follows...

1271	Inductive on_structure_field Σ : structure_field -> Type :=
1272	on_ConstantDecl c :
1273	on_constant_body Σ c -> on_structure_field Σ (ConstantDecl c)
1274	on_InductiveDecl kn inds :
1275	on_inductive Σ kn inds -> on_structure_field Σ (InductiveDecl inds)
1276	on_ModuleDecl mi mt :
1277	on_module_impl Σ mi ->
1278	on_structure_body on_structure_field mt ->
1279	on_structure_field Σ (ModuleDecl mi mt)
1280	on_ModuleTypeDecl mtd :
1281	on_structure_body Σ mtd ->
1282	on_structure_field Σ (ModuleTypeDecl mtd)

Listing 20: Typing rules for structure fields.

Now structure bodies encompass the typing of environments, such as the freshness of names.

1284	<pre>with on_structure_body (Σ: global_env_ext) : structure_body -> Type :=</pre>
1285	on_sb_nil : on_structure_body Σ nil
1286	on_sb_cons Σ sb i sf :
1287	on_structure_body Σ sb ->
1288	fresh_structure_body Σ i sb ->
1289	on_udecl Σ (universes_decl_of_decl sf) ->
1290	on_structure_field Σ sf ->
1291	on_structure_body Σ (sb ,, (i, sf))

Listing 21: Typing rules of structure body.

Contents

Introduction Summary The MetaCoq Project Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

All three techniques are related to recursion and were investigated during the modular environment rewrite.

- 1. Stronger Induction Principle for Nested Inductive Types
- 2. Well-formed Recursion
- 3. Strengthening of Induction Hypothesis (omitted)

Inductive type within an inductive type.

Rose tree (Meertens 1998):

```
Inductive roseTree :=
| node (xs: list roseTree).
```

Listing 22: Definition of a rose tree.
8.1. Nested Inductive Types

Unfortunately, Coq does not generate a strong enough induction principle for nested inductive types, only the below:

 $\forall P, (\forall xs, P(node xs)) \implies \forall rt, (P rt)$

We need to check each rose tree within the list with predicate *P* first.

8.1. Nested Inductive Types

Unfortunately, Coq does not generate a strong enough induction principle for nested inductive types, only the below:

 $\forall P, (\forall xs, P(node xs)) \implies \forall rt, (P rt)$

We need to check each rose tree within the list with predicate *P* first. Here is a stronger induction principle that is generally used:

$$\forall P, (\forall xs, (\forall x \in xs, P x) \implies P(node xs)) \implies \forall rt, (P rt)$$

The induction hypothesis is weakened, and the induction principle is strengthened!

In the modular rewrite - definition of structures!

325	<pre>Inductive structure_field :=</pre>
326	ConstantDecl : constant_body -> structure_field
327	<pre>InductiveDecl : mutual_inductive_body -> structure_field</pre>
328	ModuleDecl :
329	module_implementation
330	-> list (ident × structure_field)
331	-> structure_field
332	ModuleTypeDecl : list (ident × structure_field) -> structure_field

Listing 23: Definition of structure fields.

Typical recursion: predecessor. What if this is not obvious?

Typical recursion: predecessor. What if this is not obvious? Define a measure, and show that it is

- \cdot bounded below, and
- strictly decreasing at every recursive step.

Typical recursion: predecessor. What if this is not obvious? Define a measure, and show that it is

- \cdot bounded below, and
- strictly decreasing at every recursive step.

8.2. Where is this used?

To recurse through the nested inductive structure body! Here is a measure:

415	Equations alt_size_sf (sf: structure_field) : nat :=
416	ConstantDecl _ := 1;
417	InductiveDecl _ := 1;
418	ModuleDecl mi mt := 1 + (max (alt_size_mi mi) (alt_size_sb mt));
419	ModuleTypeDecl mt := 1 + (alt_size_sb mt);
420	where alt_size_sb (sb: structure_body) : nat :=
421	nil := 0;
422	<pre> (hd::tl) := alt_size_sf hd.2 + alt_size_sb tl;</pre>
423	where alt_size_mi (mi: module_implementation) : nat :=
424	mi_struct s := alt_size_sb s;
425	_ := 0.

Listing 24: Height defined on structure body.

```
Lemma alt_size_sf_ge_one: (forall sf: structure_field, θ < alt_size_sf</li>
Proof.
destruct sf; simp alt_size_sf; lia.
Qed.
```

Listing 25: Proof of lower bound of the height measure.

Conclusion

1. Implementation of modules, typing rules, translation/elaboration.

- 1. Implementation of modules, typing rules, translation/elaboration.
- 2. Verification of the properties.

- 1. Implementation of modules, typing rules, translation/elaboration.
- 2. Verification of the properties.
- 3. Second implementation that combines environments and modules.

- 1. Implementation of modules, typing rules, translation/elaboration.
- 2. Verification of the properties.
- 3. Second implementation that combines environments and modules.
- 4. Formal proof techniques necessary for verification.

- 1. Implementation of modules, typing rules, translation/elaboration.
- 2. Verification of the properties.
- 3. Second implementation that combines environments and modules.
- 4. Formal proof techniques necessary for verification.

- 1. Complete the modular environment rewrite.
- 2. Functors (and higher-order functors)
- 3. Document typing rules.

Previous implementations of Coq Modules: Courant, Chrąszcz, and Soubrian:

- 1. Courant added (second-class) modules, signature, and functors to Pure Type System (PTS).
- 2. Chrąszcz implemented modules, signature, and functors in mainline Coq, and proved the conservativity of his extension.
- 3. Soubrian implemented higher-order functions and unified modules and signatures with structures, and proposed dynamic naming scopes for modules.

- 1. SML by Lillibridge, Harper et. al..
- 2. OCaml by Leroy: applicative functors.
- 3. CakeML came closest in verifying modules.

Questions?