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Motivation

Coq is a proof assistant for formal verification in Intuitionistic
(Constructive) Logic.

Widely used for mathematical proofs (such as the Four-Color
Theorem and Feit-Thompson Theorem) and program
verification (CompCert C Compiler).

Implementation of Coq has consistency-threatening bugs!
Who watches the watchers?

Or can Coq verify itself?
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The MetaCoq Project

A metaprogramming platform for Coq (TemplateCoq), turned
into a verified implementation of Coq in Coq.

In 2020, Sozeau et. al. completed the formalization for a large
subset of Coq in the MetaCoq project: ”Coq Coq Correct!
Verification of Type Checking and Erasure for Coq, in Coq”.

However, a few features such as Modules are missing from the
project. Modules are important for almost all large Coq
projects!

Therefore we are here!
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Contributions of This Project

1. A Coq implementation of non-parametrized Coq modules
within the MetaCoq framework, at the TemplateCoq level.

2. Verification of correctness properties related to modules,
environment, and typing.

3. Translation of modules from TemplateCoq to PCUIC.
4. A second implementation of Coq modules unifying
Modules and the Global Environment.

5. A summary of three recursion-related formal proof
techniques.
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The MetaCoq Project - History

A metaprogramming platform for Coq.

Originally TemplateCoq, a Coq program that reifies/quotes
terms in Coq.

Since we have terms, why not state some properties about
them?

Added PCUIC (Polymorphic Cumulative Calculus of Inductive
Constructions) and Safechecker, a fuel-free, verified reduction
machine.

Proof erasure to untyped calculus, ready for translation into
”usual” programming languages.
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Where is the implementation?

• (Coq) – TemplateCoq – PCUIC – Checker – Erasure –
(Machine Code)

• Actual data structure of modules live in TemplateCoq.
• Verification of properties of modules live in TemplateCoq.
• Translation from TemplateCoq to PCUIC.
• Difference? PCUIC is easier to prove (semantical)
theorems.

8



Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

9



Example - Definitions

Modules as “collections of definitions”.

Inductive nat ≧=
| O
| S : nat -> nat.

Fixpoint plus (n m: nat) ≧=
match n with
| S n' ⛲⟏ S (plus n' m)
| O ⛲⟏ m
end.
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Example - Modules

“Packaging” definitions into a Module (Type).

(* A magma is a set with a binary (closed) operation. *)
Module Type Magma.

Parameter T: Set.
Parameter op: T -> T -> T.

End Magma.

Module Nat: Magma.
Definition T ≧= nat.
Definition op ≧= plus.

End Nat.

11



Example - Aliasing

Modules can be aliased for ease of reference.

Module Type M ≧= Magma.
Module MyNat: M ≧= Nat.
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Example - Functors

Higher-order modules - Functors.

(* A functor transforming a magma into another magma. *)
Module DoubleMagma (M: Magma): Magma.

Definition T ≧= M.T.
Definition op x y ≧= M.op (M.op x y) (M.op x y).

End DoubleMagma.

Module NatWithDoublePlus ≧= DoubleMagma Nat.

13



Abstract Syntax of Coq Modules

A structure is an ordered list of declarations of the following
kinds:

• A constant declaration.
• An inductive declaration.
• A module declaration.
• A module type declaration.

A module is a structure with a name and possibly a module
type, where all definitions are concrete.

A module type is a structure with a name.

A functor is a parametrized module, by another module or
functor.
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Semantics of Coq Modules

Modules are declarations, and they live in an environment. An
environment is an ordered list of declarations:

• A constant declaration.
• An inductive declaration.
• A module declaration.
• A module type declaration.

15



Semantics of Coq Modules

Coq Modules are second-class objects and have separate
semantics from that of terms. Lives on another plane and have
limited interactions.

Semantics are given by typing rules. Formation rules and
access rules.

WF(E, E′)[]
E[] ⊢ WF(Struct E′ End)

E[] ⊢ p→ Struct e1; . . . ; ei;Mod(X : S[:= S1]); ei+2; . . . ; en End
E; e1; . . . ; ei[] ⊢ S→ S

E[] ⊢ p.X→ S

16
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Roadmap

Implementation Verification
1. Definition of Modules 2. Lookup of definitions
3. Typing rules for Modules 4. Functoriality of Typing Rules
(Term typing rules) 5. Typing of terms
6. Translation to PCUIC (Correctness of translation)
7. Modular Environment (Correctness of implementation)

8. Three Formal Proof Techniques

18
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1. Definition of Modules

Definition of Structures.
324 Inductive structure_field ≧=
325 | sfconst : constant_body -> structure_field
326 | sfmind : mutual_inductive_body -> structure_field
327 | sfmod : module_implementation -> structure_body -> structure_field
328 | sfmodtype : structure_body -> structure_field
329 with module_implementation ≧=
330 | mi_abstract : module_implementation
331 | mi_algebraic : kername -> module_implementation
332 | mi_struct : structure_body -> module_implementation
333 | mi_fullstruct : module_implementation
334 with structure_body ≧=
335 | sb_nil
336 | sb_cons : ident -> structure_field -> structure_body -> structure_body.

Listing 1: TemplateCoq/theories/Environment.v

20



1. Definition of Modules

Now, we can define proper Modules and Module Types as
follows:

344 Definition module_type_decl ≧= structure_body.
345 Definition module_decl ≧= module_implementation × module_type_decl.
347 Inductive global_decl ≧=
348 | ConstantDecl : constant_body -> global_decl
349 | InductiveDecl : mutual_inductive_body -> global_decl
350 | ModuleDecl : module_decl -> global_decl
351 | ModuleTypeDecl : module_type_decl -> global_decl.

Listing 2: TemplateCoq/theories/Environment.v
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2. Lookup of Modules

Theorem (Lookup)
Looking up kn yields mdecl iff mdecl is declared with kn.

202 Lemma declared_module_lookup {Σ mp mdecl} :
203 declared_module Σ mp mdecl ->
204 lookup_module Σ mp = Some mdecl.
205 Proof.
206 unfold declared_module, lookup_module. now intros ->.
207 Qed.
208

209 Lemma lookup_module_declared {Σ kn mdecl} :
210 lookup_module Σ kn = Some mdecl ->
211 declared_module Σ kn mdecl.
212 Proof.
213 unfold declared_module, lookup_module.
214 destruct lookup_env as [[]|] ⛲⟏ ┄╌. congruence.
215 Qed.

Listing 3: TemplateCoq/theories/EnvironmentTyping.v 22



3. Typing rules for modules

The core is the structure fields.

1223 Inductive on_structure_field Σ : structure_field -> Type ≧=
1224 | on_sfconst c : on_constant_decl Σ c
1225 -> on_structure_field Σ (sfconst c)
1226 | on_sfmind kn inds : on_inductive Σ kn inds
1227 -> on_structure_field Σ (sfmind inds)
1228 | on_sfmod mi sb : on_module_impl Σ mi
1229 -> on_structure_body Σ sb
1230 -> on_structure_field Σ (sfmod mi sb)
1231 | on_sfmodtype mtd : on_structure_body Σ mtd
1232 -> on_structure_field Σ (sfmodtype mtd)

Listing 4: Typing rules for structure fields.
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3. Typing rules for modules

Subsequently, the typing rule for structures, and modules.

1233 with on_structure_body Σ : structure_body -> Type ≧=
1234 | on_sb_nil : on_structure_body Σ sb_nil
1235 | on_sb_cons kn sf sb : on_structure_field Σ sf
1236 -> on_structure_body Σ sb
1237 -> on_structure_body Σ (sb_cons kn sf sb)
1238 with on_module_impl Σ : module_implementation -> Type ≧=
1239 | on_mi_abstract : on_module_impl Σ mi_abstract
1240 | on_mi_algebraic kn : on_module_impl Σ (mi_algebraic kn)
1241 | on_mi_struct sb : on_structure_body Σ sb
1242 -> on_module_impl Σ (mi_struct sb)
1243 | on_mi_fullstruct : on_module_impl Σ mi_fullstruct.
1250 Definition on_module_type_decl ≧= on_structure_body.
1251 Definition on_module_decl Σ m ≧= on_module_impl Σ m.1
1252 × on_module_type_decl Σ m.2.

Listing 5: Typing rules for structure, and modules.
24



4. Functoriality of Typing Rules

Lemma (Global declaration)
Fix term typing rules P,Q such that if the environment is
P-well-formed if P types term t with type T, then Q types term t
with type T as well.

Let Σ be a P-well-formed environment. If the definition (kn,d)
is well-formed, then (kn,d) is Q-well-formed.

1431 Lemma on_global_decl_impl {cf : checker_flags} Pcmp P Q Σ kn d :
1432 (forall Γ t T,
1433 on_global_env Pcmp P Σ.1 ->
1434 P Σ Γ t T -> Q Σ Γ t T) ->
1435 on_global_env Pcmp P Σ.1 ->
1436 on_global_decl Pcmp P Σ kn d -> on_global_decl Pcmp Q Σ kn d.

Listing 6: Functoriality of typing of a global declaration.
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4. Functoriality of Typing Rules

Theorem (Global Environment)
Fix term typing rules P,Q such that they type terms in the same
way for all terms t : T.

Let Σ be a P-well-formed environment. Then Σ is
Q-well-formed.

1459 Lemma on_global_env_impl {cf : checker_flags} Pcmp P Q :
1460 (forall Σ Γ t T,
1461 on_global_env Pcmp P Σ.1 ->
1462 on_global_env Pcmp Q Σ.1 ->
1463 P Σ Γ t T -> Q Σ Γ t T) ->
1464 forall Σ, on_global_env Pcmp P Σ -> on_global_env Pcmp Q Σ.

Listing 7: Functoriality of the typing of global environments.
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5. Typing of terms

Theorem
Fix any two predicates P and PΓ that about a term t and a type
T. Suppose we are given global environment Σ and local
context Γ which are well-formed, and that the following typing
relation holds: Σ; ; Γ ⊢ t : T, then P holds on the global
environment Σ, and PΓ holds on the local context.

1020 Definition env_prop `{checker_flags} (P : forall Σ Γ t T, Type)
1021 (PΓ : forall Σ Γ (wfΓ : wf_local Σ Γ), Type) ≧=
1022 forall (Σ : global_env_ext) (wfΣ : wf Σ) Γ (wfΓ : wf_local Σ Γ) t T
1023 (ty : Σ ⓐ┘╠ Γ |- t : T),
1024 on_global_env cumul_gen (lift_typing P) Σ
1025 * (PΓ Σ Γ (typing_wf_local ty) * P Σ Γ t T).

Listing 8: Definition of key lemma in typing.

27



Checkpoint 1!

This marks the end of the TemplateCoq part of the First
Implementation. We have seen

1. The definition of Modules.
2. Proof of lookup iff declared.
3. The definition of Typing Rules.
4. Functoriality.
5. Typing properties of terms.

We will show the translation to PCUIC and motivate the Second
Implementation.

28



6. Translation to PCUIC

The global environment for PCUIC is without modules:

278 Inductive global_decl ≧=
279 | ConstantDecl : constant_body -> global_decl
280 | InductiveDecl : mutual_inductive_body -> global_decl.
281 Derive NoConfusion for global_decl.
282

283 Definition global_declarations ≧= list (kername * global_decl).
284

285 Record global_env ≧= mk_global_env
286 { universes : ContextSet.t;
287 declarations : global_declarations;
288 retroknowledge : Retroknowledge.t }.

Listing 9: Definition of the global environment for PCUIC.

So we translate by ... removing modules!
29



6. Translation to PCUIC

The engine of the translation of modules.

314 Fixpoint trans_structure_field kn id (sf : Ast.Env.structure_field) ≧=
315 let kn' ≧= kn_append kn id in
316 match sf with
317 | Ast.Env.sfconst c ⛲⟏ [(kn', ConstantDecl (trans_constant_body c))]
318 | Ast.Env.sfmind m ⛲⟏ [(kn', InductiveDecl (trans_minductive_body m))]
319 | Ast.Env.sfmod mi sb ⛲⟏ match mi with
320 | Ast.Env.mi_fullstruct ⛲⟏ trans_structure_body kn' sb
321 | Ast.Env.mi_struct s ⛲⟏ trans_structure_body kn' s
322 | _ ⛲⟏ trans_module_impl kn' mi
323 end
324 | Ast.Env.sfmodtype _ ⛲⟏ []
325 end

Listing 10: Translation of structure fields to PCUIC.
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6. Translation to PCUIC

Run the field-by-field translation over the body.

334 with trans_structure_body kn (sb: Ast.Env.structure_body) ≧=
335 match sb with
336 | Ast.Env.sb_nil ⛲⟏ []
337 | Ast.Env.sb_cons id sf tl ⛲⟏
338 trans_structure_field kn id sf ⡫⡮ trans_structure_body kn tl
339 end.

Listing 11: Translating structure body.
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6. Translation to PCUIC

Now we can translate a global declaration...

508 Definition trans_global_decl (d : kername × Ast.Env.global_decl) ≧=
509 let (kn, decl) ≧= d in match decl with
510 | Ast.Env.ConstantDecl bd ⛲⟏
511 [(kn, ConstantDecl (trans_constant_body bd))]
512 | Ast.Env.InductiveDecl bd ⛲⟏
513 [(kn, InductiveDecl (trans_minductive_body bd))]
514 | Ast.Env.ModuleDecl bd ⛲⟏ trans_module_decl kn bd
515 | Ast.Env.ModuleTypeDecl _ ⛲⟏ []
516 end.

Listing 12: Translating a global declaration.
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6. Translation to PCUIC

And finally global declarations!

527 Definition trans_global_decls env (d : Ast.Env.global_declarations)
528 : global_env_map
529 ≧= fold_right
530 (fun decl Σ ⛲⟏ fold_right add_global_decl Σ (trans_global_decl Σ decl))
531 env d.

Listing 13: Translating global declarations.

Uh-oh... notice the double fold.
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6.5. Verification of translation

Theorem (Translated iff Exists)
”Translation preserves non-existence”, that is, the translated
environment should only contain the intended translation and
nothing more; and its dual, ”Translation preserves existence”,
that is, nothing is lost in translation.

34



6.5. Verification of translation
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6.9. Motivation for Second Implementation

239 Proof.
240 destruct Σ as [univs Σ retro]. induction Σ.
241 - cbn; auto.
307 --- (** a.2 is a *)
308 unfold trans_global_env. subst Σmap'; simpl.
316 (** proving assertion by mutual induction *)
317 * subst P P0 P1. apply Ast.Env.sf_mi_sb_mutind ⛲⟏ ┄╌=.
318 ** cbn. intros c id.
326 *** simpl in *. subst.

...
Listing 15: Tedious nested proofs.

The first case takes 200 lines and counting!

Too many repeated
proofs.
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6.9. Motivation for Second Implementation

Culprit!

324 Inductive structure_field ≧=
325 | sfconst : constant_body -> structure_field
326 | sfmind : mutual_inductive_body -> structure_field
327 | sfmod : module_implementation -> structure_body -> structure_field
328 | sfmodtype : structure_body -> structure_field
347 Inductive global_decl ≧=
348 | ConstantDecl : constant_body -> global_decl
349 | InductiveDecl : mutual_inductive_body -> global_decl
350 | ModuleDecl : module_decl -> global_decl
351 | ModuleTypeDecl : module_type_decl -> global_decl.

Listing 17: An opportunity for abstraction!
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7. The Modular Environment

As the name suggests, we combine the concepts of structures
(modules) and environments.

An environment is just a module named by its directory path
(eg. /metacoq/template-coq/theories/Environment.v).
All theorems on the typing of environment follow from that of
modules!
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7. The Modular Environment

Let us define modules, then specialize into environments.

325 Inductive structure_field ≧=
326 | ConstantDecl : constant_body -> structure_field
327 | InductiveDecl : mutual_inductive_body -> structure_field
328 | ModuleDecl :
329 module_implementation
330 -> list (ident × structure_field)
331 -> structure_field
332 | ModuleTypeDecl : list (ident × structure_field) -> structure_field

Listing 18: Definition of structure fields.
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7. The Modular Environment

“Globalization”!

409 Definition module_type_decl ≧= structure_body.
410 Definition module_decl ≧= module_implementation × module_type_decl.
411 Notation global_decl ≧= structure_field.
412 Notation global_declarations ≧= structure_body.

Listing 19: Definition of global declarations.
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7.5. Typing Rules

Implemented but unverified typing rules. The interesting part
follows...

1271 Inductive on_structure_field Σ : structure_field -> Type ≧=
1272 | on_ConstantDecl c :
1273 on_constant_body Σ c -> on_structure_field Σ (ConstantDecl c)
1274 | on_InductiveDecl kn inds :
1275 on_inductive Σ kn inds -> on_structure_field Σ (InductiveDecl inds)
1276 | on_ModuleDecl mi mt :
1277 on_module_impl Σ mi ->
1278 on_structure_body on_structure_field mt ->
1279 on_structure_field Σ (ModuleDecl mi mt)
1280 | on_ModuleTypeDecl mtd :
1281 on_structure_body Σ mtd ->
1282 on_structure_field Σ (ModuleTypeDecl mtd)

Listing 20: Typing rules for structure fields.
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7.5. Typing Rules

Now structure bodies encompass the typing of environments,
such as the freshness of names.

1284 with on_structure_body (Σ: global_env_ext) : structure_body -> Type ≧=
1285 | on_sb_nil : on_structure_body Σ nil
1286 | on_sb_cons Σ sb i sf :
1287 on_structure_body Σ sb ->
1288 fresh_structure_body Σ i sb ->
1289 on_udecl Σ (universes_decl_of_decl sf) ->
1290 on_structure_field Σ sf ->
1291 on_structure_body Σ (sb ,, (i, sf))

Listing 21: Typing rules of structure body.

43



Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

44



Recursion, recursion, recursion

All three techniques are related to recursion and were
investigated during the modular environment rewrite.

1. Stronger Induction Principle for Nested Inductive Types
2. Well-formed Recursion
3. Strengthening of Induction Hypothesis (omitted)
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8.1. Nested Inductive Types

Inductive type within an inductive type.

Rose tree (Meertens 1998):

Inductive roseTree ≧=
| node (xs: list roseTree).

Listing 22: Definition of a rose tree.
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8.1. Nested Inductive Types

Unfortunately, Coq does not generate a strong enough
induction principle for nested inductive types, only the below:

∀P, (∀xs,P(node xs)) =⇒ ∀rt, (P rt)

We need to check each rose tree within the list with predicate
P first.

Here is a stronger induction principle that is generally
used:

∀P, (∀xs, (∀x ∈ xs,P x) =⇒ P(node xs)) =⇒ ∀rt, (P rt)

The induction hypothesis is weakened, and the induction
principle is strengthened!
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8.1. Where is this used?

In the modular rewrite - definition of structures!

325 Inductive structure_field ≧=
326 | ConstantDecl : constant_body -> structure_field
327 | InductiveDecl : mutual_inductive_body -> structure_field
328 | ModuleDecl :
329 module_implementation
330 -> list (ident × structure_field)
331 -> structure_field
332 | ModuleTypeDecl : list (ident × structure_field) -> structure_field

Listing 23: Definition of structure fields.
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8.2. Well-founded recursion

Typical recursion: predecessor. What if this is not obvious?

Define a measure, and show that it is

• bounded below, and
• strictly decreasing at every recursive step.
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8.2. Where is this used?

To recurse through the nested inductive structure body! Here
is a measure:

415 Equations alt_size_sf (sf: structure_field) : nat ≧=
416 | ConstantDecl _ ≧= 1;
417 | InductiveDecl _ ≧= 1;
418 | ModuleDecl mi mt ≧= 1 + (max (alt_size_mi mi) (alt_size_sb mt));
419 | ModuleTypeDecl mt ≧= 1 + (alt_size_sb mt);
420 where alt_size_sb (sb: structure_body) : nat ≧=
421 | nil ≧= 0;
422 | (hd⓮┶tl) ≧= alt_size_sf hd.2 + alt_size_sb tl;
423 where alt_size_mi (mi: module_implementation) : nat ≧=
424 | mi_struct s ≧= alt_size_sb s;
425 | _ ≧= 0.

Listing 24: Height defined on structure body.
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8.2. Where is this used?

427 Lemma alt_size_sf_ge_one: (forall sf: structure_field, 0 < alt_size_sf sf).
428 Proof.
429 destruct sf; simp alt_size_sf; lia.
430 Qed.

Listing 25: Proof of lower bound of the height measure.
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Conclusion



We have seen...

1. Implementation of modules, typing rules,
translation/elaboration.

2. Verification of the properties.
3. Second implementation that combines environments and
modules.

4. Formal proof techniques necessary for verification.
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Future work

1. Complete the modular environment rewrite.
2. Functors (and higher-order functors)
3. Document typing rules.
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Related work - Coq

Previous implementations of Coq Modules: Courant, Chrąszcz,
and Soubrian:

1. Courant added (second-class) modules, signature, and
functors to Pure Type System (PTS).

2. Chrąszcz implemented modules, signature, and functors in
mainline Coq, and proved the conservativity of his
extension.

3. Soubrian implemented higher-order functions and unified
modules and signatures with structures, and proposed
dynamic naming scopes for modules.
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Related work - ML Modules

1. SML by Lillibridge, Harper et. al..
2. OCaml by Leroy: applicative functors.
3. CakeML came closest in verifying modules.
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Thank you!

Questions?
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