Formalizing Coq Modules in the MetaCoq Project

XFC4101 Final Report

Tan Yee Jian April 17, 2023

National University of Singapore

Outline

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Conclusion

Introduction

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Widely used for mathematical proofs (such as the Four-Color Theorem and Feit-Thompson Theorem) and program verification (CompCert C Compiler).

Widely used for mathematical proofs (such as the Four-Color Theorem and Feit-Thompson Theorem) and program verification (CompCert C Compiler).

Implementation of Coq has consistency-threatening bugs! Who watches the watchers?

Widely used for mathematical proofs (such as the Four-Color Theorem and Feit-Thompson Theorem) and program verification (CompCert C Compiler).

Implementation of Coq has consistency-threatening bugs! Who watches the watchers?

Or can Coq verify itself?

In 2020, Sozeau et. al. completed the formalization for a large subset of Coq in the MetaCoq project: "Coq Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq".

In 2020, Sozeau et. al. completed the formalization for a large subset of Coq in the MetaCoq project: "Coq Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq".

However, a few features such as Modules are missing from the project. Modules are important for almost all large Coq projects!

In 2020, Sozeau et. al. completed the formalization for a large subset of Coq in the MetaCoq project: "Coq Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq".

However, a few features such as Modules are missing from the project. Modules are important for almost all large Coq projects!

Therefore we are here!

1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.
- 3. Translation of modules from TemplateCoq to PCUIC.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.
- 3. Translation of modules from TemplateCoq to PCUIC.
- 4. A second implementation of Coq modules unifying Modules and the Global Environment.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.
- 3. Translation of modules from TemplateCoq to PCUIC.
- 4. A second implementation of Coq modules unifying Modules and the Global Environment.
- 5. A summary of three recursion-related formal proof techniques.

- 1. A Coq implementation of non-parametrized Coq modules within the MetaCoq framework, at the TemplateCoq level.
- 2. Verification of correctness properties related to modules, environment, and typing.
- 3. Translation of modules from TemplateCoq to PCUIC.
- 4. A second implementation of Coq modules unifying Modules and the Global Environment.
- 5. A summary of three recursion-related formal proof techniques.

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Originally TemplateCoq, a Coq program that reifies/quotes terms in Coq.

Originally TemplateCoq, a Coq program that reifies/quotes terms in Coq.

Since we have terms, why not state some properties about them?

Originally TemplateCoq, a Coq program that reifies/quotes terms in Coq.

Since we have terms, why not state some properties about them?

Added PCUIC (Polymorphic Cumulative Calculus of Inductive Constructions) and Safechecker, a fuel-free, verified reduction machine.

Originally TemplateCoq, a Coq program that reifies/quotes terms in Coq.

Since we have terms, why not state some properties about them?

Added PCUIC (Polymorphic Cumulative Calculus of Inductive Constructions) and Safechecker, a fuel-free, verified reduction machine.

Proof erasure to untyped calculus, ready for translation into "usual" programming languages.

Originally TemplateCoq, a Coq program that reifies/quotes terms in Coq.

Since we have terms, why not state some properties about them?

Added PCUIC (Polymorphic Cumulative Calculus of Inductive Constructions) and Safechecker, a fuel-free, verified reduction machine.

Proof erasure to untyped calculus, ready for translation into "usual" programming languages.

Where is the implementation?

- (Coq) TemplateCoq PCUIC Checker Erasure (Machine Code)
- Actual data structure of modules live in TemplateCoq.
- Verification of properties of modules live in TemplateCoq.
- Translation from TemplateCoq to PCUIC.
- Difference? PCUIC is easier to prove (semantical) theorems.

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

Modules as "collections of definitions".

```
Inductive nat ≧=
| O
| S : nat -> nat.
Fixpoint plus (n m: nat) :=
    match n with
     | S n' \Rightarrow S (plus n' m)
     | 0 \Rightarrow mend.
```
"Packaging" definitions into a Module (Type).

```
(* A magma is a set with a binary (closed) operation. *)
Module Type Magma.
    Parameter T: Set.
    Parameter op: T -> T -> T.
End Magma.
```

```
Module Nat: Magma.
    Definition T := nat.
    Definition op := plus.
End Nat.
```
Modules can be aliased for ease of reference.

Module Type M ≧= Magma. **Module** MyNat: M ≧= Nat. Higher-order modules - Functors.

(A functor transforming a magma into another magma. *)* **Module** DoubleMagma (M: Magma): Magma. **Definition T** := M.T. **Definition** op $x \ y := M$.op $(M \ncap) x \ y)$ $(M \ncap) x \ y)$. **End** DoubleMagma.

Module NatWithDoublePlus ≧= DoubleMagma Nat.

- A constant declaration.
- An inductive declaration.
- A module declaration.
- \cdot A module type declaration.

- A constant declaration.
- An inductive declaration.
- A module declaration.
- A module type declaration.

A module is a structure with a name and possibly a module type, where all definitions are concrete.

- A constant declaration.
- An inductive declaration.
- A module declaration.
- \cdot A module type declaration.

A module is a structure with a name and possibly a module type, where all definitions are concrete.

A module type is a structure with a name.

- A constant declaration.
- An inductive declaration.
- A module declaration.
- A module type declaration.

A module is a structure with a name and possibly a module type, where all definitions are concrete.

A module type is a structure with a name.

A functor is a parametrized module, by another module or functor.

Modules are declarations, and they live in an environment. An environment is an ordered list of declarations:

- A constant declaration.
- An inductive declaration.
- A module declaration.
- \cdot A module type declaration.

Coq Modules are second-class objects and have separate semantics from that of terms. Lives on another plane and have limited interactions.

Semantics are given by typing rules. Formation rules and access rules.

 $WF(E, E')$ *E*[] *⊢* WF(Struct *E ′* End) *E*[] *⊢ p →* Struct *e*1; *. . .* ; *eⁱ* ; Mod(*X* : *S*[:= *S*1]); *ei*+2; *. . .* ; *eⁿ* End $E; e_1; \ldots; e_i[] \vdash S \rightarrow S$ $E[|$ *⊢ p*.*X* → \overline{S}
Implementation

Outline

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

8. Three Formal Proof Techniques

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

1. Definition of Modules

Definition of Structures.

```
324 Inductive structure_field ≧=
325 | sfconst : constant_body -> structure_field
326 | sfmind : mutual_inductive_body -> structure_field
327 | sfmod : module_implementation -> structure_body -> structure_field
328 | sfmodtype : structure_body -> structure_field
329 with module_implementation :=
330 | mi_abstract : module_implementation
331 | mi_algebraic : kername \rightarrow module_implementation
332 | mi_struct : structure_body -> module_implementation
333 | mi_fullstruct : module_implementation
334 with structure_body :=
335 | sb_nil
336 | sb_cons : ident -> structure_field -> structure_body -> structure_body.
```
Listing 1: TemplateCoq/theories/Environment.v

Now, we can define proper Modules and Module Types as follows:

```
344 Definition module_type_decl ≧= structure_body.
345 Definition module_decl ≧= module_implementation × module_type_decl.
347 Inductive global_decl :=
348 | ConstantDecl : constant_body -> global_decl
349 | InductiveDecl : mutual_inductive_body -> global_decl
350 | ModuleDecl : module_decl -> global_decl
351 | ModuleTypeDecl : module_type_decl -> global_decl.
```
Listing 2: TemplateCoq/theories/Environment.v

2. Lookup of Modules

Theorem (Lookup)

Looking up kn yields mdecl iff mdecl is declared with kn.

```
202 Lemma declared_module_lookup {Σ mp mdecl} :
203 declared_module Σ mp mdecl ->
_{204} lookup_module \Sigma mp = Some mdecl.
205 Proof.
206 unfold declared_module, lookup_module. now intros ->.
207 Qed.
208
209 Lemma lookup_module_declared {Σ kn mdecl} :
_{210} lookup_module \Sigma kn = Some mdecl ->
211 declared_module \Sigma kn mdecl.
212 Proof.
213 unfold declared_module, lookup_module.
_{214} destruct lookup_env as \begin{bmatrix} \begin{bmatrix} \end{bmatrix} \end{bmatrix} \Rightarrow \end{bmatrix}. congruence.
215 Qed.
```
Listing 3: TemplateCoq/theories/EnvironmentTyping.v

The core is the structure fields.

Listing 4: Typing rules for structure fields.

3. Typing rules for modules

Subsequently, the typing rule for structures, and modules.

```
1233 with on_structure_body Σ : structure_body -> Type ≧=
_{1234} | on_sb_nil : on_structure_body \Sigma sb_nil
1235 | on_sb_cons kn sf sb : on_structure_field \Sigma sf
1236 -> on_structure_body Σ sb
1237 -> on_structure_body Σ (sb_cons kn sf sb)
1238 with on_module_impl Σ : module_implementation -> Type ≧=
1239 | on_mi_abstract : on_module_impl Σ mi_abstract
_{1240} | on_mi_algebraic kn : on_module_impl \Sigma (mi_algebraic kn)
_{1241} | on_mi_struct sb : on_structure_body \Sigma sb
1242 -> on_module_impl \sum (mi_struct sb)
1243 | on_mi_fullstruct : on_module_impl Σ mi_fullstruct.
1250 Definition on_module_type_decl ≧= on_structure_body.
1251 Definition on_module_decl \Sigma m := on_module_impl \Sigma m.1
1252 \times on_module_type_decl \Sigma m.2.
```
Listing 5: Typing rules for structure, and modules.

4. Functoriality of Typing Rules

Lemma (Global declaration) *Fix term typing rules P,Q such that if the environment is P-well-formed if P types term t with type T, then Q types term t with type T as well.*

Let Σ *be a P-well-formed environment. If the definition* (*kn, d*) *is well-formed, then* (*kn, d*) *is Q-well-formed.*

 $_{1431}$ **Lemma** on_global_decl_impl {cf : checker_flags} Pcmp P Q Σ kn d : ¹⁴³² (**forall** Γ t T, 1433 on_qlobal_env Pcmp P Σ .1 -> 1434 P Σ Γ t T -> $0 \Sigma \Gamma$ t T) -> 1435 on_qlobal_env Pcmp P Σ .1 -> 1436 on_global_decl Pcmp P Σ kn d -> on_global_decl Pcmp Q Σ kn d. Listing 6: Functoriality of typing of a global declaration.

```
Theorem (Global Environment)
Fix term typing rules P,Q such that they type terms in the same
way for all terms t : T.
```
Let Σ *be a P-well-formed environment. Then* Σ *is Q-well-formed.*

Listing 7: Functoriality of the typing of global environments.

5. Typing of terms

Theorem

Fix any two predicates P and P^Γ *that about a term t and a type T. Suppose we are given global environment* Σ *and local context* Γ *which are well-formed, and that the following typing relation holds:* Σ; ; Γ *⊢ t* : *T, then P holds on the global environment* Σ*, and P*^Γ *holds on the local context.*

```
1020 Definition env_prop `{checker_flags} (P : forall Σ Γ t T, Type)
1021 (PΓ : forall Σ Γ (wfΓ : wf_local Σ Γ), Type) ≧=
1022 forall (Σ : global_env_ext) (wfΣ : wf Σ) Γ (wfΓ : wf_local Σ Γ) t T
1023 (ty : \Sigma ;;; \Gamma |- t : T),
1024 on_global_env cumul_gen (lift_typing P) Σ
1025 \star (P\Gamma \Gamma \Gamma (typing_wf_local ty) \star P \Gamma \Gamma t \Gamma).
```
Listing 8: Definition of key lemma in typing.

This marks the end of the TemplateCoq part of the First Implementation. We have seen

- 1. The definition of Modules.
- 2. Proof of lookup iff declared.
- 3. The definition of Typing Rules.
- 4. Functoriality.
- 5. Typing properties of terms.

We will show the translation to PCUIC and motivate the Second Implementation.

6. Translation to PCUIC

The global environment for PCUIC is without modules:

```
278 Inductive global_decl :=
279 | ConstantDecl : constant_body -> global_decl
280 | InductiveDecl : mutual_inductive_body -> global_decl.
281 Derive NoConfusion for global_decl.
282
283 Definition global_declarations := list (kername * global_decl).
284
285 Record global_env := mk_global_env
286 { universes : ContextSet.t;
287 declarations : global_declarations;
288 retroknowledge : Retroknowledge.t }.
```
Listing 9: Definition of the global environment for PCUIC.

So we translate by ... removing modules!

The engine of the translation of modules.

Listing 10: Translation of structure fields to PCUIC.

Run the field-by-field translation over the body.

Listing 11: Translating structure body.

Now we can translate a global declaration...

```
508 Definition trans_global_decl (d : kername × Ast.Env.global_decl) ≧=
509 let (kn, decl) ≧= d in match decl with
_{510} | Ast.Env.ConstantDecl bd \Rightarrow511 [(kn, ConstantDecl (trans_constant_body bd))]
_{512} | Ast.Env.InductiveDecl bd \Rightarrow513 [(kn, InductiveDecl (trans_minductive_body bd))]
_{514} | Ast.Env.ModuleDecl bd \Rightarrow trans_module_decl kn bd
_{515} | Ast.Env.ModuleTypeDecl _{-} \Rightarrow []
516 end.
```
Listing 12: Translating a global declaration.

And finally global declarations!

Definition trans_global_decls env (d : Ast.Env.global_declarations)

- : global_env_map
- := fold_right
- (**fun** decl Σ \Rightarrow fold_right add_global_decl Σ (trans_global_decl Σ decl))
- env d.

Listing 13: Translating global declarations.

And finally global declarations!

⁵²⁷ **Definition** trans_global_decls env (d : Ast.Env.global_declarations)

- ⁵²⁸ : global_env_map
- 529 := fold_right
- 530 (**fun** decl Σ \Rightarrow fold_right add_global_decl Σ (trans_global_decl Σ decl))
- ⁵³¹ env d.

Listing 14: Translating global declarations.

Uh-oh... notice the double fold.

Theorem (Translated iff Exists)

"Translation preserves non-existence", that is, the translated environment should only contain the intended translation and nothing more; and its dual, "Translation preserves existence", that is, nothing is lost in translation.

6.5. Verification of translation

6.9. Motivation for Second Implementation

```
239 Proof.
240 destruct Σ as [univs Σ retro]. induction Σ.
241 - cbn; auto.
307 --- (* \times a.2 \text{ is a *})308 unfold trans_global_env. subst Σmap'; simpl.
316 (** proving assertion by mutual induction *)
317 * subst P P0 P1. apply Ast.Env.sf_mi_sb_mutind \Rightarrow //=.
318 ** cbn. intros c id.
326 *** simpl in *. subst.
```
Listing 15: Tedious nested proofs.

The first case takes 200 lines and counting!

...

6.9. Motivation for Second Implementation

...

```
239 Proof.
240 destruct Σ as [univs Σ retro]. induction Σ.
241 - cbn; auto.
307 --- (* \times a.2 \text{ is a *})308 unfold trans_global_env. subst Σmap'; simpl.
316 (** proving assertion by mutual induction *)
317 * subst P P0 P1. apply Ast.Env.sf_mi_sb_mutind \Rightarrow //=.
318 ** cbn. intros c id.
326 *** simpl in *. subst.
```
Listing 16: Tedious nested proofs.

The first case takes 200 lines and counting! Too many repeated proofs.

6.9. Motivation for Second Implementation

Culprit!

```
324 Inductive structure_field ≧=
325 | sfconst : constant_body -> structure_field
326 | sfmind : mutual_inductive_body -> structure_field
327 | sfmod : module_implementation -> structure_body -> structure_field
328 | sfmodtype : structure_body -> structure_field
347 Inductive global_decl :=
348 | ConstantDecl : constant_body -> global_decl
349 | InductiveDecl : mutual_inductive_body -> qlobal_decl
350 | ModuleDecl : module_decl -> global_decl
351 | ModuleTypeDecl : module_type_decl -> global_decl.
```
Listing 17: An opportunity for abstraction!

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

An environment is just a module

An environment is just a module named by its directory path (eg. /metacoq/template-coq/theories/Environment.v).

An environment is just a module named by its directory path (eg. /metacoq/template-coq/theories/Environment.v).

All theorems on the typing of environment follow from that of modules!

Let us define modules, then specialize into environments.

```
325 Inductive structure_field ≧=
326 | ConstantDecl : constant_body -> structure_field
327 | InductiveDecl : mutual_inductive_body -> structure_field
328 | ModuleDecl :
329 module_implementation
330 -> list (ident \times structure_field)
331 -> structure field
332 | ModuleTypeDecl : list (ident × structure_field) -> structure_field
```
Listing 18: Definition of structure fields.

"Globalization"!

- **Definition** module_type_decl ≧= structure_body.
- **Definition** module_decl ≧= module_implementation × module_type_decl.
- **Notation** global_decl ≧= structure_field.
- **Notation** global_declarations ≧= structure_body.

Listing 19: Definition of global declarations.

7.5. Typing Rules

Implemented but unverified typing rules. The interesting part follows...

Listing 20: Typing rules for structure fields.

Now structure bodies encompass the typing of environments, such as the freshness of names.

Listing 21: Typing rules of structure body.

Contents

Introduction

Summary

The MetaCoq Project

Syntax and Semantics of Coq Modules

Implementation

First Implementation

Second Implementation - Modular Environment

Formal Proof Techniques

All three techniques are related to recursion and were investigated during the modular environment rewrite.

- 1. Stronger Induction Principle for Nested Inductive Types
- 2. Well-formed Recursion
- 3. Strengthening of Induction Hypothesis (omitted)

Inductive type within an inductive type.

Rose tree (Meertens 1998):

```
Inductive roseTree ≧=
| node (xs: list roseTree).
```
Listing 22: Definition of a rose tree.
8.1. Nested Inductive Types

Unfortunately, Coq does not generate a strong enough induction principle for nested inductive types, only the below:

∀P,(*∀xs, P*(*node xs*)) =*⇒ ∀rt,*(*P rt*)

We need to check each rose tree within the list with predicate *P* first.

8.1. Nested Inductive Types

Unfortunately, Coq does not generate a strong enough induction principle for nested inductive types, only the below:

∀P,(*∀xs, P*(*node xs*)) =*⇒ ∀rt,*(*P rt*)

We need to check each rose tree within the list with predicate *P* first. Here is a stronger induction principle that is generally used:

$$
\forall P, (\forall xs, (\forall x \in xs, P x) \implies P(node xs)) \implies \forall rt, (P rt)
$$

The induction hypothesis is weakened, and the induction principle is strengthened!

In the modular rewrite - definition of structures!

Listing 23: Definition of structure fields.

Typical recursion: predecessor. What if this is not obvious?

Typical recursion: predecessor. What if this is not obvious? Define a measure, and show that it is

- bounded below, and
- strictly decreasing at every recursive step.

Typical recursion: predecessor. What if this is not obvious? Define a measure, and show that it is

- bounded below, and
- strictly decreasing at every recursive step.

8.2. Where is this used?

To recurse through the nested inductive structure body! Here is a measure:

Listing 24: Height defined on structure body.

```
427 Lemma alt_size_sf_ge_one: (forall sf: structure_field, 0 < alt_size_sf sf).
428 Proof.
429 destruct sf; simp alt_size_sf; lia.
430 Qed.
```
Listing 25: Proof of lower bound of the height measure.

Conclusion

1. Implementation of modules, typing rules, translation/elaboration.

- 1. Implementation of modules, typing rules, translation/elaboration.
- 2. Verification of the properties.
- 1. Implementation of modules, typing rules, translation/elaboration.
- 2. Verification of the properties.
- 3. Second implementation that combines environments and modules.
- 1. Implementation of modules, typing rules, translation/elaboration.
- 2. Verification of the properties.
- 3. Second implementation that combines environments and modules.
- 4. Formal proof techniques necessary for verification.
- 1. Implementation of modules, typing rules, translation/elaboration.
- 2. Verification of the properties.
- 3. Second implementation that combines environments and modules.
- 4. Formal proof techniques necessary for verification.
- 1. Complete the modular environment rewrite.
- 2. Functors (and higher-order functors)
- 3. Document typing rules.

Previous implementations of Coq Modules: Courant, Chrąszcz, and Soubrian:

- 1. Courant added (second-class) modules, signature, and functors to Pure Type System (PTS).
- 2. Chrąszcz implemented modules, signature, and functors in mainline Coq, and proved the conservativity of his extension.
- 3. Soubrian implemented higher-order functions and unified modules and signatures with structures, and proposed dynamic naming scopes for modules.
- 1. SML by Lillibridge, Harper et. al..
- 2. OCaml by Leroy: applicative functors.
- 3. CakeML came closest in verifying modules.

Questions?