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Abstract

The MetaCoq project provides a verified implementation of a huge subset of Coq, how-

ever, does not include several features, such as Modules. This project aims to formalize

and implement a subset of non-parametrized modules in the MetaCoq project and show

that this implementation enjoys nice type-theoretic properties such as confluence, and

principal typing. This project provides two different approaches to formalizing modules

and global environments in Coq, and summarizes some proof-theoretic skills that are

useful in constructing formal proofs.

Subject Descriptors:

Theory of computation – Logic – Type Theory

Security and privacy – Formalmethods and theory of security – Logic and verification
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Chapter 1

Introduction

1.1 Why Theorem Provers?

Deductive, logical proofs have long been a way for humans to deduce mathematical facts.

However, after several centuries of development, mathematics has grown so huge that

mathematicians have no choice but to depend on previous results to develop new the-

orems. This requires a form of trust in the correctness of pen-and-paper proofs of pre-

vious results, which in turn might be dependent on previously proved, or even facts

dismissed as ”obvious”. Theoretically, mathematicians know that every theorem can be

boiled down to merely logical consequences from pre-determined axioms, but as more

and more recent proofs are found to be erroneous (Voevodsky 2018) to different extents,

the field is now in need of mechanical verification.

In the realm of computer programming, another problem arises, which similarly cries

for a similar mechanical verification - the correctness of computer programs. As Dijkstra

said, “Program testing can be used to show the presence of bugs, but never to show

their absence!” (Dijkstra et al. 1970) To ensure our programs are true to our intentions,

a formal verification or proof is needed. Being the tool for automation itself, the act

of automatically checking the correctness of programs and the lack of bugs is, in turn,

another task solvable by automation, by programming.

Therefore, proof assistants (or sometimes known as theorem provers) are thus born.
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Chapter 1. Introduction

At its core, a proof assistant takes a mathematical claim and checks the user’s proof

against a logical system with axioms and deductive rules. However, there are two ap-

proaches to writing such proofs - one can have it automated, thus the family of Auto-

mated Theorem Provers (ATP) and the family of Interactive Theorem Provers (ITP). Coq

is an ITP that implements the Polymorphic Cumulative Calculus of Inductive Construc-

tions (PCUIC) (Timany and Sozeau 2017), which can prove facts in higher-order logic. It

is among the earliest ITPs of its time and has been used to complete large proofs such

as the Four Color Theorem (Gonthier 2008) and the Feit-Thompson Theorem (Gonthier

et al. 2013), and was awarded the 2013 ACM Software System Award (Herbelin 2014).

In 2021, the CompCert C compiler, an industrial-strength compiler verified in Coq has

been awarded the ACM Software award (Software system award goes to three for pioneer-
ing open source initiatives n.d.), recognizing the potential of ITPs in the real of verifying

software correctness as well.

1.2 Why MetaCoq?

As the ancient saying goes: who watches the watchers1? While proof assistants check

for the correctness of mathematical proofs and computer programs (which are equiva-

lent as per the Curry-Howard Correspondence (Howard 1980; Curry 1934)), who checks

the correctness of the proof assistants, which are in turn programs themselves? Indeed,

although the theory behind Coq, PCUIC is known to be “correct”, such as being strongly

normalizing (and hence decidable in type checking); however, the current implementa-

tion of Coq in OCaml is known to be not entirely bug-free – at least one critical bug that

threatens the correctness of Coq is found per year, meaning that it is possible to prove

False in Coq (Consistency Bugs in Coq 2023)!

One way to remedy this situation is to have a verified implementation for Coq itself.

The MetaCoq project is in general a metaprogramming platform for Coq, where users

can reify Coq terms in Coq and manipulate them, and thus giving rise to a perfect envi-

ronment to argue about various properties of Coq terms, specifically all the correctness

1Originally in latin, Quis custodiet ipsos custodes?, literally ”Who will guard the guards themselves?
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Chapter 1. Introduction

properties of the underlying PCUIC system (Sozeau, Anand, et al. 2020). Then, a verified

implementation of Coq can be implemented in the MetaCoq project, and after passing

through a series of verified components, give rise to a compiled, verified version of Coq.

Of course, without the low-level optimizations in OCaml, the MetaCoq implementation

is slower than the original Coq, but it can be an implementation that one runs once every

month, for the highest level of security and assurance.

The careful reader here might have already noticed a problem in verifying a Coq

implementation in Coq - Gödel’s Second Incompleteness stands in the way of proving

a formal system’s consistency with itself. Noticing this problem, the approach by the

MetaCoq implementation is to assume the consistency of PCUIC as an axiom, moving

the trust from the correctness of the OCaml code to the correctness of the theory of

PCUIC itself.

1.3 Why Modules?

The verified implementation of Coq under the MetaCoq project has been done for a sub-

stantial, working subset of Coq, excluding theModule system. Whywould implementing

modules be a worthwhile effort, or rather, why is the module system important for proof

assistants like Coq, or programming in general?

Organizing and generalizing human knowledge is one of the most natural things

humans do when trying to understand this world. From the distinction of different ”sub-

jects” ranging from history to engineering, or in the case of mathematics, from algebra

to statistics. The use of modules is for a similar purpose in proof assistants: to cate-

gorize, package and organize knowledge, and is deeply related to the idea of modular

programming and ”programming in-the-large”. Therefore, even though adding the idea

of modules to Coq or any other formal logic systems should not increase the ”power” of

the system (in fact, when extending a formal system with modules, one should actively

ensure that the extension is conservative), but it is almost essential for the users and

developers to better organize their proofs.

The MetaCoq project has successfully implemented and verified a large subset of the

Coq language in 2020, with the exception with a few features such as 𝜂-expansion, Mod-
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Chapter 1. Introduction

ule System, Template Polymorphism and Proof-Irrelevant Propositions(Sozeau, Anand,

et al. 2020). Therefore, when I interned at the birthplace of the MetaCoq project, the

Gallinette team in Nantes, France, I chose to work on implementing Modules in the Meta-

Coq project.

1.4 Contributions

In this project, I have implemented a non-parametrized module system in the MetaCoq

project and verified various properties of modules and its interaction with the global

environment of Coq, the typing of Coq terms, 𝜂-expansion and more. Furthermore, I

have written a translation between the language with (non-parametrized) modules to

PCUIC without modules, hence the use of non-parametrized modules is a subset and

hence a conservative extension of the original language.

In this report, I detail my implementation of non-parametrized modules and the con-

siderations behind the design choices made. I will also explain the related correctness

properties related to the modules which I proved. As a learning project, I will also detail

Coq-specific skills that I learnt during the project.

The rest of the report is structured as follows: Chapter 2 will start with a review

of previous related works about the implementation of Modules in Coq and relevant

systems. Then, Chapter 3 will introduce the MetaCoq project and explain the syntax

and semantics of Coq modules, before describing the implementation of Modules and

the verification of their properties in Chapter 4, the core of this project. After that,

Chapter 5 will describe a second possible implementation of Modules in Coq, called the

Modular Environment rewrite that solves various problems that surfaced from the ini-

tial implementation. Finally, Chapter 6 will document the skill acquired in writing for-

mal proofs in Coq during the implementation of the project. This report will end with

possible future work in Chapter 7. The first implementation and the draft for the sec-

ond can be found on https://github.com/SwampertX/metacoq/tree/fyp-first-impl and

https://github.com/SwampertX/metacoq/releases/tag/fyp-second-impl respectively.
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Chapter 2

Previous Works

Since Coq is influenced by the ML family of languages, the specification for modules in

Coq is very similar to that of OCaml. in this chapter, we review the previous implemen-

tations of Coq modules, as well as relevant module systems in other ML languages that

this project can refer to. However, since the type system of Coq is much stronger and

more sophisticated compared toML languages, the implementations also vary wildly and

one can only refer to them as inspirations.

2.1 Coq Module Implementations

The earliest exploration of adding a module system to a Pure Type System (PTS) , a gen-

eralized type system subsuming Coq, was done by Judicaël Courant in his Ph.D. thesis

(Courant 1997). He designed the 𝑀𝐶 Module Calculus system which included modules,

signatures, and functors for PTS and proved that the extension is conservative1. Mod-

ules in 𝑀𝐶 are anonymous, second-class objects with a specific set of reduction rules,

and Courant has proven the resulting system to have decidable type inference and the

principal type property.

Building on the idea of Courant, Jacek Chrąszcz designed the earliest implementation

of a module system in Coq in his Ph.D. thesis (Chrząszcz 2004), released with Coq version
1In proof theory, an extension of a formal language is conservative if it cannot prove statements that

are not already provable in the base language.
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Chapter 2. Previous Works

7.4. The module system by Chrąszcz was a subset of that of Courant with some changes.

Similar to𝑀𝐶 , modules, signatures, and functors are implemented together with special-

ized reduction rules, but he argued that an anonymous module system does not work

well with the definition and rewriting system of Coq. Therefore, all modules are named

and the expression for modules in Coq is restricted only to module paths. The core of

Chrąszcz’s thesis is the conservativity proof of the module system extension over Coq,

together with its associated syntax, typing rules, and rewriting rules.

The most recent work on Coq’s module system is Elie Soubrian’s Ph.D. thesis (Soubi-

ran 2010). He proposed many improvements to the system, among which a few are al-

ready implemented, such as unifyingmodules and signatureswith structures, and higher-

order functors. However, other features mentioned in the thesis such as applicative func-

tors, and namespaces allowing separate, dynamic naming scopes for modules, are not yet

implemented in the module system of Coq.

2.2 Modules in ML Dialects

Interestingly, the twomainML dialects today, OCaml and SML have different approaches

and semantics for modules. Modules are by default applicative (generative functors are

possible) in OCaml while generative in SML.

The module system of SML has evolved over the years, from the earliest account by

MacQueen (MacQueen 1984) and Harper et. al. in terms of ”strong sum” types, to the

”transparent” approach by Lillibridge (Harper and Lillibridge 1994). Harper and Lillib-

ridge also developed first-order modules in SML eventually using standard notions from

type theory. Meanwhile, Leroy made progress on applicative functors, modular mod-

ule systems, and mutually recursive modules in SML, then OCaml (Leroy 1994; Leroy

1995; Leroy 2000). On this note, Derek Dreyer wrote his Ph.D. thesis (Dreyer, Harper,

and Crary 2005) on understanding and extending ML modules, and subsequently imple-

menting ML modules in its most desirable form, applicative and first-order as a subset

of a relatively small type system, 𝐹𝜔 (Rossberg, Russo, and Dreyer 2010). Another re-

lated project is CakeML (Tan, Owens, and Kumar 2015) which verifies a subset of SML,

however, modules are unverified.
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Chapter 3

MetaCoq, Coq, and the Module
System

This chapter aims to provide sufficient background knowledge for explaining the imple-

mentations of Chapters 4 and 5. We will explain the following in order:

1. First, the organization of the MetaCoq project as a context of where the implemen-

tation of modules will occur.

2. Then, the abstract syntax of the Coq Module system, some information on the

semantics of Coq, and the scope of the implementation of this project;

3. Finally in simple terms, the semantics of the subset of Module System that this

project will implement, along with a brief list of some relevant properties to verify.

Note that this chapter does not intend to give a full description of modules in Coq,

but to only explain the subset that is relevant to this project; the actual module system

of Coq is well extended with the other extra-logical parts of Coq such as pretty printing,

notation, and hint databases, which are beyond the scope of this project. For a more

precise definition of modules and related structures, please refer to Coq: Modules.

7
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Chapter 3. MetaCoq, Coq, and the Module System

3.1 Structure of the MetaCoq Project

TheMetaCoq project is a project that provides a toolchain for verified metaprogramming

in Coq (Sozeau, Anand, et al. 2020). With the ability to manipulate Coq terms in Coq, the

MetaCoq is a perfect avenue to implement a verified implementation of Coq, in Coq, by

writing verified Coq functions for the reduction of Coq terms, together with the proof of

its correctness properties, such as the strong normalization of Coq terms (and therefore,

decidable type-checking and evaluation), confluence on the rewriting of Coq terms, and

so on.

To better formalize the semantics of Coq, theMetaCoq is split into a fewmain compo-

nents. From the layer closest to the Coq language to the layer closest to machine code, we

have: TemplateCoq (Section 3.1.1), PCUIC (Section 3.1.2), followed by Safe Checker, Era-

sure and beyond(Section 3.1.3). Each of the translations from one component (or type

theory) to another is verified to preserve the correctness of reduction and conversion.

The effort was completed for a large part of the core language of Coq (Sozeau, Boulier,

et al. 2019), with only a few missing pieces :

• Eta-conversion

• Template Polymorphism

• Proof-irrelevant propositions (SProps)

• Modules

I will be tackling the last.

Let us remind ourselves of the task of MetaCoq project: we would like to have an

implementation of Coq that is verified the desired properties of the underlying theory.

For a better user experience, the terms of Coq aremuchmore complex than its underlying,

“Platonic” type-theoretical form, with many user-friendly, extra-logical features such as

hint databases, pretty printing and more. Therefore, MetaCoq has several stages for a

Coq term to go through, first stripping the internal representation (TemplateCoq) down

to a form simple enough for proving correctness properties (PCUIC), then through a few

stages, compiling the Coq terms to machine code.

8



Chapter 3. MetaCoq, Coq, and the Module System

3.1.1 TemplateCoq

TemplateCoq is a quoting library for Coq: a Coq program that takes a Coq term, and

constructs its kernel representation as a new TemplateCoq term. This is the first layer

of the stripping of a Coq term, where the structures associated with a term such as the

global environment are quoted and represented faithfully as in the kernel, except that

there are no Coq Modules present in the global environment of TemplateCoq (and the

rest of the MetaCoq project).

This allows one to turn a Coq program into a Coq internal representation along with

its associated environment structures, such as the definitions and declarations in the envi-

ronment. Then, typing, reduction, and conversion rules can be defined, and its properties

verified. Since this faithful representation of Coq terms might not yet be the easiest to

prove things on, because of reasons such as n-ary parallel application terms instead of the

unary, curried form, the important properties will be proved at the next level of PCUIC,

and the definition of typing, reduction, and conversion rules defined here are shown to

be preserved under translation to PCUIC.

3.1.2 PCUIC

PCUIC is the Polymorphic Cumulative Calculus of Inductive Constructions. It is a ”cleaned

up version of the term language of Coq and its associated type system, shown equivalent

to the one in Coq”(Metacoq n.d.). In other words, it is a type theory that is as powerful

as Coq can express, having good properties such as weakening, confluence, principality

(that every term has a principal type) etc. (Sozeau, Boulier, et al. 2019).

A term generated in TemplateCoq can be converted into a PCUIC term via a verified

process. Since the theory of PCUIC is then proven to have all the “nice” properties in

Coq, by the equivalence, the verified translation of TemplateCoq terms into PCUIC terms

propagates these properties to the language of Coq.

9



Chapter 3. MetaCoq, Coq, and the Module System

3.1.3 Safe Checker, Erasure and Beyond

The core semantic operation of type theories is their reductions. The safechecker is a

verified ”reduction machine, conversion checker and type checker” for PCUIC terms. At

this point, we already have the tools to start with a Coq term, first quoting into Tem-

plateCoq, then converting into a PCUIC term, and eventually having its type checked in

the Safe Checker via a fully verified process. As far as correctness is concerned, this has

already formed a verified end-to-end process of Coq’s correctness.

The MetaCoq has further provided a verified Type and Proof erasure process from

PCUIC to untyped Lambda Calculus. This erased language is can be evaluated in C-light
semantics, the subset of C accepted by the CompCert verified compiler, which completes

a maximally safe evaluation toolchain for the language of Coq, all the way to machine

code (Sozeau, Boulier, et al. 2019).

3.1.4 Implementing Modules

The implementation of modules is easiest done at the level of TemplateCoq, since it has

a faithful representation of the global environment of Coq, which can be extended with

Modules. However, it is a choice on what to do with the modules upon translation to the

next level of PCUIC. In this project, the modules in the global environment will not be

added to PCUIC, instead modules will be elaborated away to the pre-existing, module-

less implementation of Global Environment upon translation to PCUIC. The benefits of

doing so include:

1. We can enjoy the nice properties of PCUIC listed above automatically, via a verified

translation process, and

2. Avoid extending the proof-theoretic strength of PCUIC calculus accidentally and

possibly violating the niceness properties of PCUIC, or requiring more work nec-

essary to re-establish the properties of PCUIC.

10



Chapter 3. MetaCoq, Coq, and the Module System

3.2 Abstract Syntax of Coq Modules

Now that we know the plan of implementing Coq Modules within the MetaCoq project,

let us understand more about Coq modules before diving into their implementation.

The module system in Coq can be defined abstractly below, via a mutually recursive

definition:

• A structure is an anonymous collection of definitions, and is the underlying con-

struct of modules. They contain structure elements, which can be

– A constant definition of a Coq term, including lambda term, application

term, etc..

Definition b: bool ⌕= true.
– An inductive definition of a type.

Inductive nat ⌕=
| O
| S (n: nat).

– or a module, a module type, or a functor, recursively.

• A module is a structure given a name.

• Amodule type, which is also a structure given a name, is a signature for modules.

Within a module type, not all definitions must be concrete (e.g. just declaring

Definition b: bool.

is sufficient).

• A functor can be thought of as a function that accepts modules as arguments (and

possibly functors as well) and returns modules. Additionally, a functor, like a func-

tion in functional programming languages, can return functions as well; functors

that return functors are thus known as higher-order functors.

11



Chapter 3. MetaCoq, Coq, and the Module System

• A module alias is the association of a new name to an existing module. It can be

thought of as a special case of functor application – one can think of it as assigning

a name to the result of a nullary functor application.

For the remaining of the project, we call non-functor modules plain modules, or some-

times by its more proper name, non-parametrized modules.

3.3 Semantics of Modules

3.3.1 Conversion of Coq Terms

To understand the semantics of Coq Modules, we need to first understand the basic se-

mantics of Coq. Since in its core, Coq is an extension of Calculus of Construction, a kind

of typed lambda calculus, the core objects of Coq are simply its (lambda-calculus) terms.

Every term is strongly typed; a term being well-typed is equivalent to saying that it is

valid. Terms of a type correspond to proofs for a theorem as in the Curry-Howard corre-

spondence; if a type is inhabited, the corresponding theorem thus has a proof, and that

is how proof assistants work.

The syntax and semantics of Coq terms are as explained by the syntax, 1 conversion

(including reduction and expansion) 2 and typing 3 rules respectively in the Coq doc-

umentation. One should note that in Coq, types are terms as well and therefore have

types of their own, which in turn have types, and so on. To avoid Girard’s Paradox, the

analog of Russell’s Paradox in Type Theory induced by this typing hierarchy, the type of

all types lives in another universe, which is not required to understand in this project.

Every Coq term comes with a global environment Σ containing definitions, and a lo-

cal context Γ containing assumptions during a proof. The operational semantics of Coq

is given by its reduction relations between terms (𝛽, 𝛿, 𝜁 , 𝜂, 𝜄 to name a few); of which in-

cludes themost well-known 𝛽-reduction (function application). The denotational seman-

tics of Coq is then given by the conversion relations, which are the reflexive, transitive

1Coq: Essential Vocabulary
2Coq: Conversion
3Coq: Typing
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Chapter 3. MetaCoq, Coq, and the Module System

closure of the reduction relations.

The typing relation, that declares a term 𝑡 is well-typed with a term 𝑇 is written as

Σ; ; Γ ⊢ 𝑡 ∶ 𝑇 .

3.3.2 Modules as second-class objects

Coq modules are not first-class objects of the language; they are on another axis of the

language and interact with the core language (of terms) in limited ways only, and have

their separate semantics. These semantics include their own 𝛽-reduction, such as during

functor application.

Non-parametrized modules in Coq can be treated as a named container of constant

and inductive definitions, including possibly nested modules. The names of terms and

types defined within the module are implicitly prefaced by the sequence of modules con-

taining it (which create separate namespaces). This abstraction allows users to reuse

definitions from another file without name conflicts. To further expand this possibility,

functors define a whole family of modules that are instantiated and specialized by sup-

plying module arguments to them. Functors are therefore opaque second-class objects

which are only useful when a module is generated.

3.3.3 The exclusion of functors in this project

Functors, and especially higher-order functors, are powerful in massive generalizations.

However, the semantics of functors is complex. In Coq, the functors are generative, that

is, if we do a functor application twice with the exact same arguments, the two resulting

modules are deemed distinct. However, that is not the case for the function application of

lambda calculus terms, thus deemed by some as not natural, as seen in the debate between

applicative and generative functors within the literature of ML module implementations

(Section 2.2). Furthermore, it is not entirely clear if the project’s planned approach of

elaborating Modules away as described in Section 3.1.4 will trivially extend to the case

of functors, if at all. For the advantages listed in Section 3.1.4, it is wise to first try the

13



Chapter 3. MetaCoq, Coq, and the Module System

”elaborating away” approach for modules, and leave the extension to functors for future

work.

3.3.4 Global Environment

The global environment in Coq can be understood as a table or a map. There are three

columns in the map: first is a canonical kernel name (kername for short) second a path-

name, and finally, the definition object.

A pathname is a name given to a definition by the user, including the ambient path

(created by possibly nested modules) to that definition, in a dot-separated string such as

𝑀.𝑁 .𝑎. Canonical kernames are the pathnames modulo aliasing, and can be thought of

as unique labels.

Finally, the definition object can be:

• A constant definition to a Coq term.

• An inductive definition of a type.

• A module definition, or

• A module type definition.

Implementation

The implementation of the global environment in TemplateCoq is merely a list of defini-

tions (Listing 4.1.4), while the looking up of names is via a linear search function through

the list of declarations. Although this is less efficient than the map implementation in

PCUIC, this does not affect the speed of the MetaCoq implementation, since the checker

of MetaCoq operates at the level of PCUIC.

14
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3.3.5 Plain Modules

Behavior and Implementation

To implement this, we need to design a data structure to represent modules, such as an

inductive datatype that directly encodes the structure-based definition in section 3.2.

Properties

We say the implementation of such a module is correct if the meta-theory of the original

system is unchanged and remains correct; that is the proofs go through when terms can

be defined within modules. Since theMetaCoq project has proven various nice properties

about conversion in Coq, our project on plain modules is two-fold:

1. Define the data structure associated with modules and give modules typing rules

to determine what it means for modules to be correct.

2. Show that the module interacts with the environment well by proving theorems

about Environment Typing.

3. Since modules change the structure of environments, and environments are es-

sential in the typing of Coq terms, verify the typing properties of Coq under the

addition of modules.

Concretely, if a module as below is defined while the global environment, which

stores definitions is denoted as Σ:
Module M.

Definition a: nat ⌕= 0.
End M.
Then the environment must have a new declaration added:

Σ ∶= Σ ∶∶ ModuleDeclaration(𝑀, [ConstantDeclaration(𝑀.𝑎, 𝑛𝑎𝑡, 0)])

So when 𝑀.𝑎 is called, it must refer to the definition in the Global Environment cor-

rectly.

15
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3.3.6 Aliased Modules

Aliasingmodules can be treated as a special case of functor application of nullary functors

(plain modules). Alternatively and more intuitively, aliased modules are just a renaming

of existing modules, which can be seen as syntactic sugar for modules with alternative

names. Therefore, the correctness depends only on implementing this internal referenc-

ing correctly.

Behavior and Implementation

We implement aliased modules with only one piece of data – the kername it is referenc-

ing to. Then, by the typing rule of modules that enforce that such a declared kername

must already be defined in the environment, we prevent creating forward references and

therefore cyclic aliasing. The lookup operation in the environment will then traverse this

tree of aliasing back to the root to find its concrete definition, thus reducing the problem

to a simple lookup correctness problem (Listing 4.1.5).

Module N ⌕= M.

Aliasing 𝑁 to 𝑀 and 𝑀 is a previously defined module (or an alias), then any access

path 𝑁 .𝑋 should be resolved similarly to 𝑀.𝑋 (note that since 𝑀 is possibly an alias as

well, we do not require 𝑁 .𝑋 to resolve to 𝑀.𝑋 ).

Proof Obligations

1. Well-definedness: aliasing can only occur for well-defined modules. There cannot

be self-aliasing and forward aliasing (to something not yet defined).

2. The resolution of aliased modules is done at definition. If 𝑁 is aliased to 𝑀 , then

𝑁 will immediately inherit the same kername as 𝑀 . We will show this resolution

is decidable and results in correct aliasing.

These properties depend on the correctness of a lookup function to determine if the

aliasing is valid (already existing in the environment, and of the correct type).

16
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3.3.7 Translation to PCUIC

Once the above is done, we can be sure that a Coq program with Modules has all its

terms are well-defined, and it enjoys the nice properties of conversion, at the level of

TemplateCoq. Then, as our definition of Modules is eventually elaborated away into

PCUIC calculus and the definitions in modules “flattened” into the corresponding global

environment, we will have to show the correctness of this translation.

Behavior and Implementation

The translation of modules, since it is implemented inductively, amounts to translating

the base cases of the induction, which are the constant and inductive definitions are given

with unique translated kernames. This is via a straightforward recursive function using

the sub-procedures of translating constant and inductive procedures.

Proof Obligations

Once that is done, it suffices to check that this extended translation procedure still pre-

serves typing, reduction, and conversion, then the niceness properties will follow.

17



Chapter 4

Implementation of MetaCoq Modules

The code listings used in this chapter can be found on https://github.com/SwampertX/
metacoq/releases/tag/fyp-first-impl.

4.1 The Module Data Structure

First, we define the underlying structure of a module. A structure_field contains a list

of pairs with the first entry an identifier, and the second entry a structure_field. A

structure_field can then be declarations for the following: constants, mutually induc-

tive types, modules, and module types.

18
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324 Inductive structure_field ⌕=
325 | sfconst : constant_body -> structure_field
326 | sfmind : mutual_inductive_body -> structure_field
327 | sfmod : module_implementation -> structure_body -> structure_field
328 | sfmodtype : structure_body -> structure_field
329 with module_implementation ⌕=
330 | mi_abstract : module_implementation (** Declare Module M: T. *)
331 | mi_algebraic : kername -> module_implementation (** Module M [⌕T] ⌕= N. *)
332 | mi_struct : structure_body -> module_implementation (** Module M:T. ▊◖☢ End M.*)
333 | mi_fullstruct : module_implementation (** Module M. ▊◖☢ End M.*)
334 with structure_body ⌕=
335 | sb_nil
336 | sb_cons : ident -> structure_field -> structure_body -> structure_body.

Listing 4.1.1: Definition of a structure field.

The type module_implementation here represents the four ways of defining a module

respectively:

1. mi_abstract: an abstract module declaration usually used in module signatures for

nested modules;

2. mi_algebraic: an algebraic module expression, most commonly functor applica-

tion. Here, we consider only module aliasing (nullary functor application).

3. mi_struct: a module declarationwith an explicit module type. The structure_body
argument will contain the concrete implementation given.

4. mi_fullstruct: a module declaration without an explicit module type; in other

words, the module has a type exactly equal to itself, so the implementation will be

stored within the second argument to the sfmod constructor.

Now, we can define proper Modules and Module Types as follows:
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344 Definition module_type_decl ⌕= structure_body.
345 Definition module_decl ⌕= module_implementation × module_type_decl.

Listing 4.1.2: Definition of the Module and Module Type structures.

Since a module type is a module without an implementation. Note that from the code

from now on, structure body (structure_body) and module type module_type_decl are

equivalent.

Finally, the global declaration can be added with two new constructors, ModuleDecl
and ModuleTypeDecl:

347 Inductive global_decl ⌕=
348 | ConstantDecl : constant_body -> global_decl
349 | InductiveDecl : mutual_inductive_body -> global_decl
350 | ModuleDecl : module_decl -> global_decl
351 | ModuleTypeDecl : module_type_decl -> global_decl.

Listing 4.1.3: Extending the global declarations with modules.

A global environment is defined as a list of global declarations with some other

bookeeping data, most importantly information about type universes, which is outside

of the scope of this paper, so we will merely mention it.

354 Definition global_declarations ⌕= list (kername * global_decl).
355

356 Record global_env ⌕= mk_global_env
357 { universes : ContextSet.t;
358 declarations : global_declarations;
359 retroknowledge : Retroknowledge.t }.

Listing 4.1.4: Definition of a global environment.

20
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Verified Properties

Even before any information on the well-typedness of a defined module, we can already

assert that whenever a module is defined, we should be able to look it up in the global

environment Σ, and the lookup result is the exact module we defined. Vice versa, if we

found some module via a kername kn, it must have been defined with the same name.

202 Lemma declared_module_lookup {Σ mp mdecl} :
203 declared_module Σ mp mdecl ->
204 lookup_module Σ mp = Some mdecl.
205 Proof.
206 unfold declared_module, lookup_module. now intros ->.
207 Qed.
208

209 Lemma lookup_module_declared {Σ kn mdecl} :
210 lookup_module Σ kn = Some mdecl ->
211 declared_module Σ kn mdecl.
212 Proof.
213 unfold declared_module, lookup_module.
214 destruct lookup_env as [[]|] ⟉⢦ ▵◽. congruence.
215 Qed.

Listing 4.1.5: Proof of lookup of modules.

The same is done for Module Types as well.

4.2 Typing Modules

To ensure a module or a module type is well-typed, we need to define typing rules on

modules. They are defined in terms of inductive types:
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1222 Inductive on_structure_field Σ : structure_field -> Type ⌕=
1223 | on_sfconst c : on_constant_decl Σ c -> on_structure_field Σ (sfconst c)
1224 | on_sfmind kn inds : on_inductive Σ kn inds -> on_structure_field Σ (sfmind inds)
1225 | on_sfmod mi sb : on_module_impl Σ mi
1226 -> on_structure_body Σ sb
1227 -> on_structure_field Σ (sfmod mi sb)
1228 | on_sfmodtype mtd : on_structure_body Σ mtd -> on_structure_field Σ (sfmodtype mtd)
1229

1230 with on_structure_body Σ : structure_body -> Type ⌕=
1231 | on_sb_nil : on_structure_body Σ sb_nil
1232 | on_sb_cons kn sf sb : on_structure_field Σ sf
1233 -> on_structure_body Σ sb
1234 -> on_structure_body Σ (sb_cons kn sf sb)
1235 with on_module_impl Σ : module_implementation -> Type ⌕=
1236 | on_mi_abstract : on_module_impl Σ mi_abstract
1237 | on_mi_algebraic kn : on_module_impl Σ (mi_algebraic kn)

Listing 4.2.1: Typing rules for structure fields.

For example, the constructor on_sfmod says that for a structure field containing a

module to be well-defined, we require the module implementation and module type

(here written as structure body) to be recursively well-typed, via on_module_impl and

on_structure_body respectively. Since the checking of well-typedness also depends on

the global environment (eg. reference to predefined constants etc.), the argument Σ is

passed around everywhere in these typing rules.

One might further notice that the type constructors on_* in 4.2.1 are largely self-

contained, except for on_constant_decl and on_inductive in the on_sfconst and on_sfmind
constructors, respectively. This should give the reader some insight into the intuition that

non-parametrized modules are largely tree-like containers with actual content supplied

by Constant Declarations and (Mutually) Inductive Declarations. If we follow the path

of the definition of, say, on_constant_decl:
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1214 Definition on_constant_decl Σ d ⌕=
1215 match d.(cst_body) with
1216 | Some trm ⟉⢦ P Σ [] trm (Typ d.(cst_type))
1217 | None ⟉⢦ on_type Σ [] d.(cst_type)
1218 end.

Listing 4.2.2: Typing rule for constant declarations.

The type-checking is now at the level of terms - if the constant body is None, ie. it

is a declaration without a body, then one checks the well-typedness of the type; on the

other hand, if the constant has a body of Some trm, we will check the well-typedness of

the term trm and its type, using the predicate P that will be supplied later.

4.3 Typing the Global Environment

Since modules do not interact with terms, it thus mainly lives in the global environment

and provides namespaced definitions to the user. It is thus important to make sure that

the global environment is well-typed.
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1257 Definition on_global_decl Σ kn decl ⌕=
1258 match decl with
1259 | ConstantDecl d ⟉⢦ on_constant_decl Σ d
1260 | InductiveDecl inds ⟉⢦ on_inductive Σ kn inds
1261 | ModuleDecl mb ⟉⢦ on_module_decl Σ mb
1262 | ModuleTypeDecl mtd ⟉⢦ on_structure_body Σ mtd
1263 end.

1284 Inductive on_global_decls (univs : ContextSet.t) (retro : Retroknowledge.t)
1285 : global_declarations -> Type ⌕=
1286 | globenv_nil : on_global_decls univs retro []
1287 | globenv_decl Σ kn d :
1288 on_global_decls univs retro Σ ->
1289 on_global_decls_data univs retro Σ kn d ->
1290 on_global_decls univs retro (Σ ,, (kn, d)).

Listing 4.3.1: Typing rule for global declarations.

To make sure that a list of global declarations is well-typed, we need to check that:

1. the prefix global environment Σ is well-defined; and

2. the current global declaration given by kername kername and declaration d consists
of well-typed data (on_global_decls_data) concerning the prefix Σ:
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1271 Definition fresh_global (s : kername) (g : global_declarations) : Prop ⌕=
1272 Forall (fun g ⟉⢦ g.1 ⤽⤾ s) g.
1273

1274 Record on_global_decls_data (univs : ContextSet.t)
1275 retro (Σ : global_declarations)
1276 (kn : kername) (d : global_decl) ⌕=
1277 {
1278 kn_fresh : fresh_global kn Σ ;
1279 udecl ⌕= universes_decl_of_decl d ;
1280 on_udecl_udecl : on_udecl univs udecl ;
1281 on_global_decl_d : on_global_decl (mk_global_env univs Σ retro, udecl) kn d
1282 }.

Listing 4.3.2: Freshness requirement for global declarations.

The global environment is well-typed if it has well-typed global declarations and

well-typed universes.

1322 Definition on_global_env (g : global_env) : Type ⌕=
1323 on_global_univs g.(universes)
1324 × on_global_decls g.(universes) g.(retroknowledge) g.(declarations).

Listing 4.3.3: Typing the global environment.

Verified Properties

A few things can be said about typing rules. First thing is that it is artificially defined

to ”carve out” a subset of terms that we deem as well-typed; and other than a few san-

ity properties such as being consistent (if there exists a proof tree showing the well-

typedness of a term, there doesn’t exist another proof tree that shows otherwise), it is

entirely what it is made to be. Therefore, the main place to verify these properties is at

the typing of terms, which we will explain later. Also, the definition of environment is
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parallel to the calculus of the terms, so instead of checking the correctness of the typing

rules itself, we can check its behavior when we change a set of typing rules for the terms.

Recall that the in the example of chasing the definition of on_constant_decl, we found

that the well-typedness predicate P is parametrized, therefore allowing us to investigate

the following functoriality property concerning different predicates:

1426 Lemma on_global_decl_impl {cf : checker_flags} Pcmp P Q Σ kn d :
1427 (forall Γ t T,
1428 on_global_env Pcmp P Σ.1 ->
1429 P Σ Γ t T -> Q Σ Γ t T) ->
1430 on_global_env Pcmp P Σ.1 ->
1431 on_global_decl Pcmp P Σ kn d -> on_global_decl Pcmp Q Σ kn d.

Listing 4.3.4: Functoriality of typing of a global declaration.

This lemma says that: fix a global environment Σ. Let well-typeness predicates P, Q
be given. Then for all global declarationswith kername kn and declaration d, if we assume

• the predicate P implies the predicate Q over all local contexts, terms, and types; and

• the global environment is well typed against P; and

• the declaration kn, d is well typed against P,

then the declaration kn, d is well typed against Q.
The key of the proof here is to do a case analysis on the type of the declaration d.

Since any global declaration can only be a constant, inductive, module or module type,

we first clear the first two cases using lemmas on_{constant,inductive}_decl_impl. The
remaining two are mutually inductive, so we solve them using the mutual induction prin-

ciple on_mi_sf_sb_mutrect, and reduce to the base cases, which are again the constant

and the inductive case.

Since the above lemma is true across all declarations, it is natural to think that this

functoriality should extend to lists of global declarations as well – that is indeed the case.
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1454 Lemma on_global_env_impl {cf : checker_flags} Pcmp P Q :
1455 (forall Σ Γ t T,
1456 on_global_env Pcmp P Σ.1 ->
1457 on_global_env Pcmp Q Σ.1 ->
1458 P Σ Γ t T -> Q Σ Γ t T) ->
1459 forall Σ, on_global_env Pcmp P Σ -> on_global_env Pcmp Q Σ.

Listing 4.3.5: Functoriality of typing of the global environment.

4.4 Typing of Terms

Since we modified the environment to include module definitions, this also directly af-

fects the properties of the typing of Coq terms, since every term is typed under a global

environment (and a local context). Terms in TemplateCoq are of an inductive type with

18 constructors:

401 Inductive term : Type ⌕=
402 | tRel (n : nat)

...

420 | tFloat (f : PrimFloat.float).

Listing 4.4.1: Definition of TemplateCoq terms.

each having its own typing rule (relation between a term and its type). The typing

relation is too long (around 122 lines) to show in its entirety, thus we show its signature

and a few constructors:
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741 Inductive typing `{checker_flags} (Σ : global_env_ext) (Γ : context)
742 : term -> term -> Type
743 ⌕=
744 | type_Rel n decl :
745 wf_local Σ Γ ->
746 nth_error Γ n = Some decl ->
747 Σ ▁◉☑ Γ |- tRel n : lift0 (S n) decl.(decl_type)

...

864 where " Σ ▁◉☑ Γ |- t : T " ⌕= (typing Σ Γ t T) : type_scope

Listing 4.4.2: Typing of TemplateCoq terms.

where the constructors are typing rules for each kind of term, such as a variable, a

sort, a lambda abstraction, an application and so on.

Verified Properties

A key lemma about the typing of terms under well-formed environments, env_prop, is
given as follows:

1020 Definition env_prop `{checker_flags} (P : forall Σ Γ t T, Type)
1021 (PΓ : forall Σ Γ (wfΓ : wf_local Σ Γ), Type) ⌕=
1022 forall (Σ : global_env_ext) (wfΣ : wf Σ) Γ (wfΓ : wf_local Σ Γ) t T
1023 (ty : Σ ▁◉☑ Γ |- t : T),
1024 on_global_env cumul_gen (lift_typing P) Σ
1025 * (PΓ Σ Γ (typing_wf_local ty) * P Σ Γ t T).

Listing 4.4.3: Definition of key lemma in typing.

Which says the following: fix any two predicates P and PΓ that about a term t and a

type T. Suppose we are given global environment Σ and local context Γ which are well-
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formed, and that the following typing relation holds:

Σ; ; Γ ⊢ 𝑡 ∶ 𝑇 ,

then P holds on the global environment Σ, and PΓ holds on the local context.

Once we supply such predicates P and PΓ, the above will be turned into a statement

that can be proven (or disproved). This is a strong statement because, for instance, it

implies the following property about typing:

1027 Lemma env_prop_typing `{checker_flags} {P PΓ} : env_prop P PΓ ->
1028 forall (Σ: global_env_ext) (wfΣ: wf Σ) (Γ: context) (wfΓ: wf_local Σ Γ) (t T: term),
1029 Σ ▁◉☑ Γ |- t : T -> P Σ Γ t T.

Listing 4.4.4: A consequence of env prop.

Implying that if we know that env_prop P PΓ is true, then P does not only holds on

the global environment Σ, it holds on the terms as well.

To proof env_prop is difficult since, mechanically, it is a verification across the in-

ductive cases of the global environment, as well as the 18 kinds of terms and their cor-

responding typing rules. It would be immensely useful to first prove an intermediary

lemma leading to it, or in a way, an induction step:

1118 Lemma typing_ind_env `{cf : checker_flags} :
1119 forall (P : global_env_ext -> context -> term -> term -> Type)
1120 (Pdecl ⌕= fun Σ Γ wfΓ t T tyT ⟉⢦ P Σ Γ t T)
1121 (PΓ : forall Σ Γ, wf_local Σ Γ -> Type),

...

1269 P Σ Γ t B) ->
1270

1271 env_prop P PΓ.

Listing 4.4.5: Induction hypothesis for proving env prop.
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Themodule typing rules we defined earlier are used extensively since we are showing

properties of global environments as well. We omit almost 400 lines of verified proof from

this report and leave the details to the interested reader.

4.5 Translation to PCUIC

At this point, we have already successfully defined modules and their typing rules in

TemplateCoq, as well as verifying their correctness properties. Since TemplateCoq has

modules while PCUIC does not, we need to elaborate modules away during the trans-

lation. We do this by storing all definitions within modules as if they are in the (flat)

global environment. Of course, the key here is to choose an algorithm for the elaboration

of modules that preserves the freshness (no name clash) of the translated environment,

preserves the correct ”look-up” properties, and also being well-typed.

The global environment for PCUIC is without modules:

278 Inductive global_decl ⌕=
279 | ConstantDecl : constant_body -> global_decl
280 | InductiveDecl : mutual_inductive_body -> global_decl.
281 Derive NoConfusion for global_decl.
282

283 Definition global_declarations ⌕= list (kername * global_decl).
284

285 Record global_env ⌕= mk_global_env
286 { universes : ContextSet.t;
287 declarations : global_declarations;
288 retroknowledge : Retroknowledge.t }.

Listing 4.5.1: Definition of the global environment for PCUIC.

Having seen definitions of global environments on both sides, we can now look at

the translation function. This is similarly a mutually recursive function (since structures
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are defined in a mutual inductive manner), but the heavy lifting is done in the translation

of structure fields:

314 Fixpoint trans_structure_field kn id (sf : Ast.Env.structure_field) ⌕=
315 let kn' ⌕= kn_append kn id in
316 match sf with
317 | Ast.Env.sfconst c ⟉⢦ [(kn', ConstantDecl (trans_constant_body c))]
318 | Ast.Env.sfmind m ⟉⢦ [(kn', InductiveDecl (trans_minductive_body m))]
319 | Ast.Env.sfmod mi sb ⟉⢦ match mi with
320 | Ast.Env.mi_fullstruct ⟉⢦ trans_structure_body kn' sb
321 | Ast.Env.mi_struct s ⟉⢦ trans_structure_body kn' s
322 | _ ⟉⢦ trans_module_impl kn' mi
323 end
324 | Ast.Env.sfmodtype _ ⟉⢦ []
325 end

Listing 4.5.2: Translation of structure fields to PCUIC.

There are a few things to note:

1. The body of this mutually recursive branch of the fixpoint is mainly a match ex-

pression describing the translation for each kind of structure field.

• Constant declarations and inductive type declarations are translated as is,

with a new kername kn';
• Module declarations have the declarations in its implementation translated

recursively;

• Module types are removed entirely since there is no more module in PCUIC,

and hence the signature of modules would be meaningless.

2. The new kername kn' is done by appending the prefix (module) name kn with the

identifier id associated with that structure field entry.
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150 Definition kn_append (kn: kername) (id: ident) : kername ⌕= ((MPdot kn.1 kn.2), id).

Listing 4.5.3: Appending kernames.

Once we have the above, we can translate modules by folding through the structure

body.

334 with trans_structure_body kn (sb: Ast.Env.structure_body) ⌕=
335 match sb with
336 | Ast.Env.sb_nil ⟉⢦ []
337 | Ast.Env.sb_cons id sf tl ⟉⢦
338 trans_structure_field kn id sf ⥂⥅ trans_structure_body kn tl
339 end.

508 Definition trans_global_decl (d : kername × Ast.Env.global_decl) ⌕=
509 let (kn, decl) ⌕= d in match decl with
510 | Ast.Env.ConstantDecl bd ⟉⢦ [(kn, ConstantDecl (trans_constant_body bd))]
511 | Ast.Env.InductiveDecl bd ⟉⢦ [(kn, InductiveDecl (trans_minductive_body bd))]
512 | Ast.Env.ModuleDecl bd ⟉⢦ trans_module_decl kn bd
513 | Ast.Env.ModuleTypeDecl _ ⟉⢦ []
514 end.

Listing 4.5.4: Translating structure body and global declarations.

To translate global declarations, we need to flatmap across the global environment

with trans_global_decl, since now each TemplateCoq global declaration can translate

into multiple PCUIC global declarations due to the tree structure of modules.

525 Definition trans_global_decls env (d : Ast.Env.global_declarations)
526 : global_env_map ⌕=
527 fold_right
528 (fun decl Σ ⟉⢦ fold_right add_global_decl Σ (trans_global_decl Σ decl)) env d.

Listing 4.5.5: Translating global declarations.
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Properties on Translation

The properties in this part can be phrased in the form of ”translation preserves [prop-

erty]”. The ultimate property here is that under a well-formed environment Σ, ”transla-
tion preserves typing/well-typedness”:

3528 Theorem template_to_pcuic_typing {cf} {Σ : Ast.Env.global_env_ext} Γ t T :
3529 ST.wf Σ ->
3530 ST.typing Σ Γ t T ->
3531 let Σ' ⌕= trans_global Σ in
3532 typing Σ' (trans_local Σ' Γ) (trans Σ' t) (trans Σ' T).

Listing 4.5.6: Translation preserves typing.

The main lemma proved here is template_to_pcuic, which is of the following form:

2473 Theorem template_to_pcuic {cf} :
2474 ST.env_prop (fun Σ Γ t T ⟉⢦
2475 let Σ' ⌕= trans_global Σ in
2476 wf Σ' ->
2477 typing Σ' (trans_local Σ' Γ) (trans Σ' t) (trans Σ' T))
2478 (fun Σ Γ _ ⟉⢦
2479 let Σ' ⌕= trans_global Σ in
2480 wf Σ' ->
2481 wf_local Σ' (trans_local Σ' Γ)).

Listing 4.5.7: Template to PCUIC.

The statement here is abstracted by the env_prop (4.4.3), which in its totality, assigns

P to the first argument, asserting that

Σ; ; Γ ⊢ 𝑡 ∶ 𝑇 ⟹ Σ′; ; Γ′ ⊢ 𝑡′ ∶ 𝑇 ′

where Σ′, Γ′, 𝑡′, 𝑇 ′ represents the translated global environment, local context, term
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and type Σ, Γ, 𝑡 , 𝑇 respectively; and sets the second argument to assert that the translated

local context is also well-formed.

Before showing these big theories about typing, we have ”sanity” checks on transla-

tion to ensure that environments are well-translated. This property can be formulated

as

1. ”translation preserves non-existence”, that is, the translated environment should

only contain the intended translation and nothing more; and

2. its dual, ”translation preserves existence”, that is, nothing is lost in translation.

In Coq, this can be formulated as the following lemma:

222 Lemma trans_lookup_env {cf} {Σ : Ast.Env.global_env} cst {wfΣ : Typing.wf Σ} :
223 match Ast.Env.lookup_env Σ cst with
224 | None ⟉⢦ lookup_env (trans_global_env Σ) cst = None
225 | Some d ⟉⢦ match d with
226 | Ast.Env.ConstantDecl _ | Ast.Env.InductiveDecl _ ⟉⢦
227 ∑ (Σ' : Ast.Env.global_env) (d': global_decl),
228 [× Ast.Env.extends_decls Σ' Σ,
229 Typing.wf Σ',
230 wf_global_decl (Σ', Ast.universes_decl_of_decl d) cst d,
231 extends_decls (trans_global_env Σ') (trans_global_env Σ),
232 trans_global_decl (trans_global_env Σ') (cst, d) = (cst, d')▟◧[] &
233 lookup_env (trans_global_env Σ) cst = Some d']
234 (** Modules are elaborated away. *)
235 | Ast.Env.ModuleDecl _ | Ast.Env.ModuleTypeDecl _ ⟉⢦
236 lookup_env (trans_global_env Σ) cst = None
237 end
238 end.

Listing 4.5.8: Translation preserves (non-)existence.
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The two cases of the outermost match statement on the return value of lookup_env Σ cst
correspond to the two properties above:

1. (non-existence) the case of None returned, which means that the original environ-

ment Σ does not contain the declaration cst, it should not appear in the translated

environment. Contrastingly,

2. (existence) the case where cst is the declaration d in the original environment Σ,
we can say the following:

• if d is a constant or an inductive declaration, it should be translated as if,

therefore it should be found in the translated, well-formed environment Σ′
(lines 228-233 of 4.5.8). However,

• if d is a module or a module type, then it shouldn’t exist in the translated

environment Σ′. Furthermore, its constituent structure fields should appear

as declarations in Σ′, which is exactly the definition of the translation.
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A Modular Environment

After the completion of my implementation in the previous chapter, the last mile of ver-

ifying the TemplateCoq to PCUIC translation proved to be time-consuming, resulting

in weeks without any QEDs. In the process of verifying those properties, many techni-

cal challenges surfaced in constructing formal proofs in Coq for concepts that are easily

explained in natural language. Fortunately, two beneficial events ensued:

1. After identifying the pain points in the proofs, I found out the design decision that

caused the trouble. In tackling it, a new, more natural solution surfaced, but it

requires a complete rewrite. As an experimental effort, I detailed the rewrite in

this chapter and up to the environment typing rules, as a possible second take at

the project. I will discuss this implementation in the first section.

2. Due to the new design choices in the rewrite and their complexity, some non-trivial

proof machinery was required to complete the formal proofs, such as nested induc-

tive types with their induction hypotheses, well-founded recursion, and strength-

ening of induction hypotheses. Since a number of them are direct consequences of

this modular environment rewrite, I will include them in the next chapter (Chapter

6) as a summary of my learning.
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5.1 Difficulties on the Global Declaration List

The proof for trans_lookup_env (4.5.8) proved to be tedious due to the double fold. In

each fold, one adds definitions to the environment using an opaque add_global_decl
function, which changes the accumulator Σ during each fold. A nested fold makes this

even more tedious with proof levels going up to four or five levels.

239 Proof.
240 destruct Σ as [univs Σ retro]. induction Σ.
241 - cbn; auto.

307 --- (** a.2 is a *)
308 unfold trans_global_env. subst Σmap'; simpl.

316 (** proving assertion by mutual induction *)
317 * subst P P0 P1. apply Ast.Env.sf_mi_sb_mutind ⟉⢦ ▵◽=.
318 ** cbn. intros c id.

326 *** simpl in *. subst.

...

Listing 5.1.1: Tedious nested proofs.

After spending weeks trying different methods to make this work, including an elab-

orate argument defining a strict partial order on kernames (6.3), I decided to venture for

a new solution. The source of the problem here is the double-fold (4.5.8), which obscures

the meaning of expressions after repeated applications of add_global_decl changing the

accumulator environment. To break down the two folds:

• The first fold is done over the list of global declarations, while

• the second fold is done over the module structure.

and the definition for structure fields is identical to that of global declarations:
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324 Inductive structure_field ⌕=
325 | sfconst : constant_body -> structure_field
326 | sfmind : mutual_inductive_body -> structure_field
327 | sfmod : module_implementation -> structure_body -> structure_field
328 | sfmodtype : structure_body -> structure_field

347 Inductive global_decl ⌕=
348 | ConstantDecl : constant_body -> global_decl
349 | InductiveDecl : mutual_inductive_body -> global_decl
350 | ModuleDecl : module_decl -> global_decl
351 | ModuleTypeDecl : module_type_decl -> global_decl.

Listing 5.1.2: Identical definitions of structures and declarations

5.2 The Modular Environment

It would be natural to unify modules and environments into a single structure — mod-

ules. The list of global declarations itself can be seen as an anonymous, ambient, top-

level module, thus just a special case of a module. Under this generalization, any well-

formedness properties or well-typedness properties about environments should be sub-

sumed under modules, thus giving us a good sense when defining the typing rules for

modules. A draft implementation of the rest of the code listings can be found on https:
//github.com/SwampertX/metacoq/releases/tag/fyp-second-impl.

5.2.1 Definition of the Data Structure

Let us begin by defining modules, then specialize into global declarations.
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325 Inductive structure_field ⌕=
326 | ConstantDecl : constant_body -> structure_field
327 | InductiveDecl : mutual_inductive_body -> structure_field
328 | ModuleDecl :
329 module_implementation
330 -> list (ident × structure_field)
331 -> structure_field
332 | ModuleTypeDecl : list (ident × structure_field) -> structure_field
333 with module_implementation ⌕=
334 | mi_abstract : module_implementation (** Declare Module M: T. *)
335 | mi_algebraic : kername -> module_implementation (** Module M [⌕T] ⌕= N. *)
336 | mi_struct : (** Module M:T. ▊◖☢ End M.*)
337 list (ident × structure_field) -> module_implementation
338 | mi_fullstruct : module_implementation (** Module M. ▊◖☢ End M.*).

Listing 5.2.1: Definition of structure fields.

Structure fields now subsume global declarations, and a structure body is associated

list of structure fields and identifiers. Similar to the previous definition (4.1.1), the pos-

sible nesting of structure bodies inside structure fields gives rise to the tree structure of

modules.

409 Definition module_type_decl ⌕= structure_body.
410 Definition module_decl ⌕= module_implementation × module_type_decl.
411 Notation global_decl ⌕= structure_field.
412 Notation global_declarations ⌕= structure_body.

Listing 5.2.2: Definition of global declarations.

Similarly, we define module types to be structure bodies, and a module to be a module

type with an implementation. Since global environments are anonymous modules, they

do not have a possibility of reuse and thus signature is insignificant here - it is of the

same structure as a structure body.
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So, how dowe tell apart a global environment from a structure body? We differentiate

it by an additional directory path to the current file.

478 Record global_env ⌕= mk_global_env
479 { universes : ContextSet.t;
480 declarations : structure_body;
481 retroknowledge : Retroknowledge.t;
482 path : dirpath }.

Listing 5.2.3: Definition of global declarations.

5.2.2 Definition of Typing Rules

The typing rules of this section are still experimental and not yet finalized. However,

they illustrate a possible set of rules that can be implemented and then verified against

various properties.

1271 Inductive on_structure_field Σ : structure_field -> Type ⌕=
1272 | on_ConstantDecl c :
1273 on_constant_body Σ c -> on_structure_field Σ (ConstantDecl c)
1274 | on_InductiveDecl kn inds :
1275 on_inductive Σ kn inds -> on_structure_field Σ (InductiveDecl inds)
1276 | on_ModuleDecl mi mt :
1277 on_module_impl Σ mi ->
1278 on_structure_body on_structure_field mt ->
1279 on_structure_field Σ (ModuleDecl mi mt)
1280 | on_ModuleTypeDecl mtd :
1281 on_structure_body Σ mtd ->
1282 on_structure_field Σ (ModuleTypeDecl mtd)

Listing 5.2.4: Typing rules for structure fields.

The typing for structure fields are natural: constants and inductive types are typed
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as-if, while modules and module types are typed recursively. The interesting part that is

different from the previous implementation is the combination of the information when

typing a structure body:

1284 with on_structure_body (Σ: global_env_ext) : structure_body -> Type ⌕=
1285 | on_sb_nil : on_structure_body Σ nil
1286 | on_sb_cons Σ sb i sf :
1287 on_structure_body Σ sb ->
1288 fresh_structure_body Σ i sb ->
1289 on_udecl Σ (universes_decl_of_decl sf) ->
1290 on_structure_field Σ sf ->
1291 on_structure_body Σ (sb ,, (i, sf))

Listing 5.2.5: Typing rules of structure body.

This time, the typing rules for a structure body include typical checks as in the global

environment. If we focus on the on_sb_cons constructor for the inductive case, the checks
include

1. the correctness of the prefix structure body against the environment,

2. the freshness of identifier i against the prefix structure body and the environment,

3. the universe declaration of the structure field,

4. and the recursive check to the structure field itself.

We define naturally the below:

1301 Definition on_module_type_decl ⌕= on_structure_body.
1302 Definition on_module_decl Σ m ⌕= on_module_impl Σ m.1 × on_module_type_decl Σ m.2.

1312 Definition on_global_decl ⌕= on_structure_field.

Listing 5.2.6: Typing rules of modules, and this global declarations.
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Properties to Verify

Here, we list some properties to modify and then verify, following the changes. We give

the sketch in mathematical form only, with references to existing code where possible.

The uniqueness of names in the environment is important - shadowing is not al-

lowed in Coq. Therefore, it would be important to check that our freshness rule in

on_structure_body implies no duplication of names:

Lemma 5.2.1. If a structure body Σ is well-formed, then no two structure fields in Σ have
the same kername.

We then have the following corollary:

Collorary 5.2.1. If the global declarations Σ are well-formed, then no two global declara-
tions in Σ have the same kername.

The corresponding previous formulation is as follows:

1361 Lemma NoDup_on_global_decls univs retro decls
1362 : on_global_decls univs retro decls -> NoDup (List.map fst decls).

Listing 5.2.7: Well-formed implies no duplicated names.

Other than that, we can have the similar functoriality result on typing global envi-

ronments, this time following directly from the case of a structure body:

1361 Lemma NoDup_on_global_decls univs retro decls
1362 : on_global_decls univs retro decls -> NoDup (List.map fst decls).

Listing 5.2.8: Functoriality of typing of global environments.

For a possible extension of this approach, please refer to the chapter on future work:

Section 7.2.1.
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Tactics and Proof Machineries

Now we discuss some of the main learning points gained during the implementation of

this project. Although these might be common knowledge for the Coq or proof theory

expert, they contain some non-trivial proof-theoretic machinery that is useful in formal

proofs involving inductive data types, even though they might be dismissed in typical

pen-and-paper proofs by their ”apparent” correctness. They are listed below in no par-

ticular order.

• nested induction, mutual induction, (can always reduce to the case of a simple

inductive type, but...)

• well-founded recursion and measures.

• definition of strict partial orders and strengthening of induction hypotheses

6.1 Nested Inductive Types

Inductive types are a way to define things recursively. A typical example is the inductive

definition of a list:
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Inductive list (T: Type) ⌕=
| nil
| cons (t: T) (tl: list).

Listing 6.1.1: Definition of a polymorphic list.

To argue about lists, we have the following induction principle:

∀𝑃, (𝑃 𝑛𝑖𝑙) ⟹ (∀𝑡 𝑡 𝑙, (𝑃 𝑡 𝑙) ⟹ 𝑃(𝑐𝑜𝑛𝑠 𝑡 𝑡 𝑙)) ⟹ ∀𝑙, (𝑃 𝑙)

Nested inductive types are inductive types that have nested induction in them, one

simple example being a rose tree (Meertens 1988):

Inductive roseTree ⌕=
| node (xs: list roseTree).

Listing 6.1.2: Definition of a rose tree.

where the nested induction occurs at the list of rose trees within a node. Intuitively,

this is a tree structure in which every node contains a ”forest” of trees. Unfortunately,

Coq does not generate a strong enough induction principle for nested inductive types

such as the below:

∀𝑃, (∀𝑥𝑠, 𝑃(𝑛𝑜𝑑𝑒 𝑥𝑠)) ⟹ ∀𝑟𝑡, (𝑃 𝑟 𝑡)

We focus on the induction hypothesis, the condition before the top-level implication.

It omitted the fact that 𝑥𝑠 is a list, and we need to check each rose tree within the list

with predicate 𝑃 first. Here is a stronger induction principle that is generally used:

∀𝑃, (∀𝑥𝑠, (∀𝑥 ∈ 𝑥𝑠, 𝑃 𝑥) ⟹ 𝑃(𝑛𝑜𝑑𝑒 𝑥𝑠)) ⟹ ∀𝑟𝑡, (𝑃 𝑟 𝑡)
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Notice the weakening of the induction hypothesis, and thus the strengthening of the

induction principle. In my case, it is the definition of structure fields of the modular

rewrite:

325 Inductive structure_field ⌕=
326 | ConstantDecl : constant_body -> structure_field
327 | InductiveDecl : mutual_inductive_body -> structure_field
328 | ModuleDecl :
329 module_implementation
330 -> list (ident × structure_field)
331 -> structure_field
332 | ModuleTypeDecl : list (ident × structure_field) -> structure_field

Listing 6.1.3: Definition of structure fields.

where the nested list (ident × structure_field) is a doubly-nested inductive, since

the product (or pair) type itself is defined inductively, in addition to the inductively de-

fined polymorphic lists (6.1.1). In this case, we need to manually define a stronger in-

duction principle for use. This can be done by noticing that nested inductive types have

an equivalent rewrite by expanding the definition explicitly. For example, in the case of

rose trees, Coq will generate the correct (sufficiently strong) induction principle for the

following equivalent definition:

Inductive roseTree ⌕=
| node (xs: listRoseTree)
where listRoseTree ⌕=
| nil
| cons (r: roseTree) (tl: listRoseTree).

Listing 6.1.4: Non-nested inductive definition of rose trees.

The reasonwhywe prefer to use readily-available abstractions such as lists is that one

can then rely on facts that are proven already on the polymorphic lists, and properties
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on their operations such as map and fold. Therefore, the operation here is twofold:

1. generate induction principle for the non-nested formulation and remember both

the induction principle (a type in Coq, due to Curry-Howard correspondence) and

the term that inhabits it.

2. now redefine the type in a nested inductive manner, then manually define the

induction principle and prove it. The corresponding action in Coq is to define

the type corresponding to the inductive principle (which is similar to the one ex-

tracted above) while replacing the explicitly inductive parts with its relevant coun-

terparts. For example, replace the explicit weakening described in (REFME) with

the Coq.Lists.List.Forall inductive (higher-order) predicate. Finally, prove this

newly defined induction principle correct by supplying the term we obtained in

the previous step with suitable amendments.

We illustrate this with an actual implementation of the strengthened induction princi-

ple on structure fields. First, we define the fixpoint F1 that switch cases on the constructor

of a typical list, nil and cons:

360 Section Nested.
361 Variable F : forall (s: structure_field), P s.
362 Fixpoint F1 (s : structure_body) : P1 s ⌕=
363 match s as s0 return (P1 s0) with
364 | nil ⟉⢦ f7
365 | cons (i,s0) s1 ⟉⢦ f8 i s0 (F s0) s1 (F1 s1)
366 end.
367 End Nested.

Listing 6.1.5: Manually proving IH for the nested list.

Then, we can integrate F1 into the induction principle terms for structure fields (in-

cluding its mutually inductive counterpart, module implementation), therefore forming

the proofs for the individual strengthened induction principles:
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369 Fixpoint F (s : structure_field) : P s ⌕=
370 match s as s0 return (P s0) with
371 | ConstantDecl c ⟉⢦ f c
372 | InductiveDecl m ⟉⢦ f0 m
373 | ModuleDecl m s0 ⟉⢦ f1 m (F0 m) s0 (F1 F s0)
374 | ModuleTypeDecl s0 ⟉⢦ f2 s0 (F1 F s0)
375 end
376 with F0 (m : module_implementation) : P0 m ⌕=
377 match m as m0 return (P0 m0) with
378 | mi_abstract ⟉⢦ f3
379 | mi_algebraic k ⟉⢦ f4 k
380 | mi_struct s ⟉⢦ f5 s (F1 F s)
381 | mi_fullstruct ⟉⢦ f6
382 end.
383

384 Definition structureField_rect ⌕= F.
385 Definition moduleImpl_rect ⌕= F0.
386 Definition structureBody_rect ⌕= F1 F.

Listing 6.1.6: Induction principles with explicit names.

Finally, the last 3 lines give suggestive names to the fixpoints corresponding to the

induction hypothesis for the respective structures. Their types are already inductive

hypotheses about only one particular branch of the mutually inductive definition, and

we combine them into a huge induction principle:
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389 Definition sf_mi_sb_mutrect
390 (P : structure_field -> Type) (P0 : module_implementation -> Type)
391 (P1 : structure_body -> Type ⌕= All (fun x ⟉⢦ P (snd x)))
392 (f : forall c : constant_body, P (ConstantDecl c))
393 (f0 : forall m : mutual_inductive_body, P (InductiveDecl m))
394 (f1 : forall m : module_implementation,
395 P0 m -> forall s : structure_body, P1 s -> P (ModuleDecl m s))
396 (f2 : forall s : structure_body, P1 s -> P (ModuleTypeDecl s))
397 (f3 : P0 mi_abstract) (f4 : forall k : kername, P0 (mi_algebraic k))
398 (f5 : forall s : structure_body, P1 s -> P0 (mi_struct s))
399 (f6 : P0 mi_fullstruct) :
400 (forall s: structure_field, P s) * (forall m: module_implementation, P0 m)
401 * (forall s: structure_body, P1 s).
402 Proof.
403 repeat split.
404 eapply structureField_rect; eauto.
405 eapply moduleImpl_rect; eauto.
406 eapply structureBody_rect; eauto.
407 Defined.

Listing 6.1.7: The strengthened mutual induction principle.

To define a type, one has to show that the type is inhabited, and the purpose of the

proof is exactly to construct such a term for the type. Till here, we have seen a non-trivial

example of how to define an induction principle for a nested (and in addition, mutually)

inductive type.

There has been some metaprogramming effort to generate nested induction hypothe-

ses in Coq automatically using the MetaCoq platform (Liesnikov, Ullrich, and Forster

2020), however, the tool was not mature enough and has not been updated since some

previous versions.
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6.2 Well-founded recursion

Recursion with a single recursive constructor and one (or more) base cases are well-

known, such as that of factorial or Fibonacci numbers. One can naturally extend the

definition to structural recursions, such as that on an abstract syntax tree when writing

programming language implementations. However, when the recursive case is not a

strict ”predecessor” of the current case, we need a stronger form of recursion. For the

case of linearly ordered datatypes such as natural numbers, we can argue using strong

induction; however, for other datatypes where there isn’t a canonical linear order, such

as, again, rose trees (6.1.2).

Recursing on the items in the list of rose trees is essential, but to Coq they are not

direct subterms of the tree while the argument xs is. We are left with the difficult choice

of convincing the positivity check for fixpoints in Coq that our recursion terminates.

Fortunately, this can be solved by well-founded recursion, a more general form of

recursion that determines termination by the following:

1. defining a linear order on the recursive term, called a measure.

2. showing that this measure is lower-bounded.

Then the recursion is well-founded and will terminate. The use case of this in the

project is to recurse through a module and resolve the fully qualified name (e.g. M.N.a)
from the nested module structure and their identifier names (e.g. M, N, a). For tree-like
structures, a typical measure is the height of the tree:
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415 Equations alt_size_sf (sf: structure_field) : nat ⌕=
416 | ConstantDecl _ ⌕= 1;
417 | InductiveDecl _ ⌕= 1;
418 | ModuleDecl mi mt ⌕= 1 + (max (alt_size_mi mi) (alt_size_sb mt));
419 | ModuleTypeDecl mt ⌕= 1 + (alt_size_sb mt);
420 where alt_size_sb (sb: structure_body) : nat ⌕=
421 | nil ⌕= 0;
422 | (hd▟◧tl) ⌕= alt_size_sf hd.2 + alt_size_sb tl;
423 where alt_size_mi (mi: module_implementation) : nat ⌕=
424 | mi_struct s ⌕= alt_size_sb s;
425 | _ ⌕= 0.

Listing 6.2.1: Height defined on structure body.

Then we show this measure is lower-bounded:

427 Lemma alt_size_sf_ge_one: (forall sf: structure_field, 0 < alt_size_sf sf).
428 Proof.
429 destruct sf; simp alt_size_sf; lia.
430 Qed.

Listing 6.2.2: Proof of lower bound of the height measure.

Therefore, we can define a well-founded recursion using this measure, specifically

mentioned on line 433:
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432 Equations paths_of_structure_field (sf: structure_field) (prefix: list ident)
433 : list (list ident) by wf (alt_size_sf sf) lt ⌕=
434 | ConstantDecl _, p ⌕= [p];

...

446 | ModuleTypeDecl (hd▟◧tl), p ⌕=
447 (paths_of_structure_field hd.2 (p⥂⥅[hd.1])) ⥂⥅
448 (paths_of_structure_field (ModuleTypeDecl tl) p).

466 Defined. Next Obligation.
467 pose proof (alt_size_sf_ge_one s).
468 simp alt_size_sf. simpl. lia.
469 Defined.

Listing 6.2.3: Defining a well-founded recursive function using the new measure.

6.3 Strengthening the induction hypothesis

Sometimes, the induction hypothesis of a statement is too weak and entirely useless. For

example, suppose we wish to show the following:

Theorem 6.3.1. Fix a natural number 𝑥 . Then for all natural numbers 𝑛 ≥ 1, 𝑥 + 𝑛 ≠ 𝑥 .

Wrong proof. Let us attempt a direct induction.

Base case: suppose 𝑛 = 1, 𝑥 + 𝑛 = 𝑛 + 1 = 𝑠𝑢𝑐𝑐(𝑥) ≠ 𝑥 by definition.

Inductive case: suppose any 𝑛 ≥ 1, 𝑥 + 𝑛 ≠ 𝑥 . Then

𝑥 + (𝑛 + 1) = (𝑥 + 𝑛) + 1 = 𝑠𝑢𝑐𝑐(𝑥 + 𝑛)

Now, we wish to say

𝑥 + 𝑛 ≠ 𝑥 ⟹ 𝑠𝑢𝑐𝑐(𝑥 + 𝑛) ≠ 𝑥
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which is not true in general! ■

The key here is that the induction hypothesis of ”not equal” is too weak and does not

help with proving the inductive case. Should it have been the strict inequality instead,

𝑥 + 𝑛 > 𝑥 which implies 𝑥 + 𝑛 ≠ 𝑥 , we would have been fine!

Put in context, we wanted to show that for every declaration with kername kn' in a

module named kn, can not have the same name as the module after translation.

502 Lemma translated_module_decl_all_kn_neq:
503 forall m kn, Forall (fun '(kn', _) ⟉⢦ kn ⤽⤾ kn') (trans_module_decl kn m).

Listing 6.3.1: A module cannot have the same kername as its contents.

The direct induction proved to be a failure. However, we can prove instead a stronger

statement:

350 Lemma translated_structure_field_all_kn_extends:
351 forall sf kn id, Forall (fun '(kn', _) ⟉⢦ kn_extends kn kn')
352 (trans_structure_field kn id sf).

Listing 6.3.2: Every declaration within a module must have a kername extending that of

the module.

Since the binary relation on kernames, kn_extends kn kn' decides whether kn' is an

extension of kn and is a strict partial order, it would imply the inequality in 6.3.1. Then,

it remains to define it in Coq and show the asymmetry and transitivity of this relation.

We omit the proof here.
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152 Inductive kn_extends : kername -> kername -> Prop ⌕=
153 | kn_extends_one kn id : kn_extends kn (kn_append kn id)
154 | kn_extends_step id kn kn' (H: kn_extends kn kn') : kn_extends kn (kn_append kn' id).

190 Lemma kn_extends_trans : forall kn kn' kn'',
191 kn_extends kn kn' -> kn_extends kn' kn'' -> kn_extends kn kn''.

239 Lemma kn_extends_irrefl : forall kn, ~(kn_extends kn kn).

Listing 6.3.3: Definition, asymmetry and transitivity of the relation.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this paper, we looked at Coq’s module system and gave two possible implementations

of non-parametrized Modules in the MetaCoq project, by the means of elaborating the

module structures awaywhen translating fromTemplateCoq to PCUIC. In the first imple-

mentation, we verified several niceness properties about the implementation. Inspired by

the difficulty of verifying the translation from TemplateCoq to PCUIC, we have proposed

another implementation that unifies the Coq global environment with modules with ini-

tial implementations and ideas. Along the way, we also noted down the proof-theoretic

skills acquired with nested inductive types, well-formed recursion, and the strengthening

of induction hypotheses for future references.

7.2 Future Work

We list a few directions for possible future work:

7.2.1 Modular Environment Rewrite

The (experimental) modular rewrite of the environment is incomplete due to its com-

plexity and the time required to troubleshoot Coq errors and acquire the machineries
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mentioned in Chapter 6. An immediate, possible future work is to continue the work

done in Chapter 5, with implementation and verification order similar to that of Chapter

4. Verification of the TemplateCoq to PCUIC translation under the new implementation,

which should be easier due to the lack of the double-fold problem (4.5.5).

7.2.2 Functors, and higher-order functors

In Section 2.2, we briefly studied the history ofmodule implementations, and the behavior

of functors and their semantics have been a non-trivial topic. Even in Coq, the OCaml

implementation has encountered consistency-threatening bugs from functors 1, a sign

of complexity in this area. However, functors are arguably the most interesting part of

modules that allow massive abstraction and generalization that is worth looking into.

7.2.3 More Typing Rules

More of a documentation effort, the state of typing rules specifically for modular envi-

ronments (as implemented in the OCaml implementation) perhaps needs to be re-studied

with the recent paper of Soubrian after the improvements since his Ph.D. There are

some differences between the typing rules of the official documentation, Chrąszsz’s and

Soubrian’s Ph.D. thesis, which might all be different from that of the official implemen-

tation. This is not only important for contributors and maintainers of the future, but will

also facilitate potential academic explorations of module implementations.

1such as https://github.com/coq/coq/issues/15838
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